
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
SCREENING AND SUFFICIENCY IN 

MULTIOBJECTIVE DECISION PROBLEMS 
WITH LARGE ALTERNATIVE SETS 

 

THESIS 
 

Michael D. Cote, Captain, USAF 

 

AFIT/OR-MS/ENS/10-12 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

AFIT/OR-MS/ENS/10-12 
 
 
 
 

SCREENING AND SUFFICIENCY IN  

MULTIOBJECTIVE DECISION PROBLEMS  

WITH LARGE ALTERNATIVE SETS 

 
 

THESIS 
 
 
 
 

Presented to the Faculty  
 

Department of Operational Sciences 
 

 Graduate School of Engineering and Management  
 

Air Force Institute of Technology 
 

Air University 
            

 Air Education and Training Command 
 

 In Partial Fulfillment of the Requirements for the   
 

Degree of Master of Science in Operations Research 
 
 
 
 

Michael D. Cote 
 

Captain, USAF 
 
 

June 2010 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

AFIT/OR-MS/ENS/10-12 
 
 
 
 

SCREENING AND SUFFICIENCY IN  

MULTIOBJECTIVE DECISION PROBLEMS  

WITH LARGE ALTERNATIVE SETS 

 
 
 

Michael D. Cote 
Captain, USAF 

 
 
 
 
 
 
 

    Approved: 
 
 
 

_______//SIGNED//__________________         11 AUG 2010
 Dr. Jeffery Weir (Chairman)      date 
 
 

________//SIGNED//__________________         11 AUG 2010 
 Dr. Stephen Chambal, LtCol, USAF (Member)   date 
 
 
  
  
  
 
  
 



iv 
 

AFIT/OR-MS/ENS/10-12 

Abstract 

 
 Portfolio selection problems with combinatorially-large alternative sets can be impossible 

to evaluate precisely on a reasonable timescale.  When portfolios require complex modeling for 

performance assessment, prohibitive computational processing times can result.  Eliminating a 

small number of alternatives through an intelligent screening process can greatly reduce the 

number of alternative combinations, thereby decreasing a problem's evaluation time and cost.   

 A methodology was developed for the class of hierarchical portfolio selection problems 

in which multiple objectives are all judged on the same sub-objectives.  First, a novel capability-

based alternative screening process was devised to identify and remove poor alternatives, thereby 

reducing the number of portfolios.  Then, a performance-based portfolio screening process was 

explored to estimate portfolio sufficiency according to the performance requirements of the 

decision maker.  Following the establishment of a set of sufficient portfolios, the analyst can 

employ higher resolution post-analysis methods to choose a final solution.   

 Finally, the methodology was applied to a portfolio selection problem in which the 

United States Strategic Command attempts to select an ideal mix of intelligence, surveillance, 

and reconnaissance assets.  After deconstructing the actual objective hierarchy, a set of 

representative alternatives were evaluated and a variety of screening procedures were applied to 

demonstrate significant reduction in the number of possible portfolios.    
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Definitions 
 

Goal   
 
 The overall goal of a decision problem defines what the decision maker wishes to 
accomplish.  In an evaluative hierarchy, the goal sits alone at the top and can usually be assessed 
by a maximization or minimization function. 
 
 
Objective   
 
 The set of objectives determines what must be accomplished for the decision maker to 
meet the goal.  Objectives may compete: increased achievement in one objective may come at 
the cost of decreased achievement in another objective. 
 
 
Sub-objective   
 
 Sub-objectives separate a single objective into its component parts, to better understand 
how well an objective is achieved. 
 
 
Measure   
 
 A measure is a performance indicator on which direct data can be obtained.  A set of 
measures is used to determine achievement in a sub-objective.  In the literature, the term 'metric' 
is also commonly used for this bottom level of the hierarchy. 
 
 
Example hierarchy 
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SCREENING AND SUFFICIENCY IN MULTIOBJECTIVE DECISION PROBLEMS  

WITH LARGE ALTERNATIVE SETS 

 
 
 

I.  Introduction   
 
 

 Complex decision problems require careful study to choose, with confidence, an 

appropriate solution to meet the overall goal.  The job of the analyst is to reduce this complexity 

to a model that reasonably replicates actuality and adds value to the decision making process.  

Difficulties can manifest in the problem structure, with competing objectives, or in the solution 

pool, with many alternatives available.  When the solution pool is large, it may be beneficial to 

eliminate poor alternatives to allow for better examination of the reduced set of alternatives.   

 
I.A. Background 

 Multicriteria Decision Analysis. 

The methods of decision analysis (DA) are implemented to create a framework to 

objectively analyze a complex decision problem.  Input from the decision maker and subject 

matter experts is used to evaluate how well potential solutions, called alternatives, achieve the 

overall goal.  When a problem features several potentially-competing objectives, multicriteria 

decision analysis (MCDA) may be used.  The purpose of MCDA is to assist the decision maker 

in sorting alternatives into groups, ranking alternatives in an order, or selecting a best alternative.  

At a fundamental level, MCDA can be used to eliminate alternatives that do not appear to 

warrant further attention (Hobbs & Meier, 2000).  Screening the alternative set creates a smaller 

universe of potential solutions, from which an ideal solution may be more easily identified. 

 While multicriteria decision analysis processes are helpful for many problems, 

complicating features can exist.  Because MCDA requires each alternative to be evaluated 
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against a hierarchy derived from the decision maker's values and preferences, the analyst must 

have access to detailed performance data.  Determining the performance of each alternative can 

prove prohibitive in a problem with a very large number of alternatives.  A screening process 

may be helpful to reduce the number of alternatives that must be precisely evaluated.   

 Identifying and eliminating dominated alternatives that will never prove ideal can reduce 

the size of the alternative set.  The resulting screened set of alternatives, nearly guaranteed to 

contain the best solution, can then be examined more closely.  When the problem under study is 

to develop an ideal portfolio comprised of several alternatives, screening is especially important 

due to the combinatorial nature of the number of potential portfolios.  A method to reduce the 

alternative set to a more tractable size is vital. 

 Combinatorial Difficulties. 

 Portfolio selection problems featuring alternative sets that grow combinatorially present 

significant difficulty in computation and evaluation.  Consider an alternative set    that contains  

  elements.  A  -combination of set    is a subset of    elements from    .  Thus,    .  

The subset may have any number of elements from one to    .  The number of possible  -

combinations of   is represented by  

   

  (1) 

   

where    is the number of elements in    and    , the factorial, is defined as follows: 

   

  (2) 
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 When the solution to a problem is a portfolio of alternatives, the size of the portfolio is 

generally unknown: will one alternative solve the problem, are three needed, are ten needed?  

Thus, out of the set    of potential alternatives to be included in the final portfolio, every size 

portfolio must be considered.  The total number of possible portfolios becomes  

  

  (3) 

 

This sum grows rapidly with each new alternative introduced, as shown in Table 1.   

 

Table 1: Combinatorial growth 

 

 

Thus, if one can eliminate a small number of alternatives, the number of combinations of those 

alternatives is greatly reduced, as seen in Figure 1.   

Alternatives 1 2 3 4 5 6 7 8 9 10 15 20 30
Combinations 1 3 7 15 31 63 127 255 511 1023 32767 1048575 1073741823
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Figure 1: Graph of combinatorial growth 

  

 Table 2 illustrates the dramatic reduction in combinations possible.   

 

Table 2: Combination reduction 

  

  

 For a problem with ten alternatives, eliminating one alternative (or ten percent) reduces 

the number of combinations to be evaluated by over half.  On a larger problem with 30 

alternatives, eliminating ten percent, just three of the alternatives, reduces the number of 

Size of n
% Reduction in 

Alternatives
% Reduction in 
Combinations

10% 50.05%
20% 75.07%
30% 87.59%

10% 75.00%
20% 93.75%
30% 98.44%

10% 87.50%
20% 98.44%
30% 99.80%

10

20

30
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combinations by nearly 88%; eliminating thirty percent of the alternatives reduces the number of 

combinations by 99.8%.  As the size of the alternative pool grows even larger, eliminating a tiny 

fraction of alternatives drastically reduces the number of portfolios that must be considered. 

 Screening. 

 Screening the alternative set to marginally reduce its cardinality can greatly reduce the 

number of combinations and thereby the time and cost associated with evaluation.  When 

portfolios require complex modeling for performance evaluation, prohibitive computational 

processing times can result.     

 Once a decision is made to screen alternatives, it becomes necessary to utilize a proper 

screening methodology.  The analyst must establish appropriate screening factors and determine 

at what level criteria should be set so that potentially useful alternatives are not mistakenly 

eliminated.  An alternative must provide sufficient performance in supporting objectives to 

effectively achieve the goal.  Defining this sufficiency level allows for appropriate screening -- 

any solution that is insufficient can be screened out.  This sufficiency process applies when one 

alternative must be selected or when a portfolio of alternatives must perform sufficiently to 

achieve the goal.   

 
I.B. Problem Statement 

  Portfolio selection problems with a large number of alternatives can be impossible to 

precisely evaluate on a reasonable timescale due to both data collection and computation 

difficulties.  Eliminating alternatives through an intelligent screening process can greatly reduce 

the number of portfolios under consideration.  This shortens problem evaluation time and allows 

for closer examination of the remaining quality portfolios.   
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 In this paper, a method is developed to examine a specific class of problems with very 

large alternative sets.  First, a novel capability-based alternative screening process is devised and 

progressively applied to several screening situations.  Then, a performance-based portfolio 

screening process is explored to estimate portfolio sufficiency according to the performance 

requirements of the decision maker.  Once a set of sufficient portfolios has been established, the 

analyst can use higher resolution post-analysis methods to choose a final solution.   

 
I.C. Research Scope 

 The class of hierarchical problems under study consists of those in which an overall goal 

is met through achievement in multiple objectives; all objectives are judged on the same set of 

sub-objectives.  However, measures of performance for the sub-objectives are allowed to vary 

among objectives.  The decision maker wishes to select an ideal portfolio of alternatives best to 

meet the overall goal.   

 The methodology is most useful when a large number of alternatives produces an 

extremely large set of possible portfolios, making evaluation of each portfolio's performance 

impossible.  This research develops a two-step process to reduce the number of alternatives for 

problems of this common structure and then determine which remaining portfolios sufficiently 

meet the decision maker's requirement.   

 
I.D. Assumptions 

 The methodology assumes a problem subject to its application can be structured as 

previously described.  Additionally, the performance of alternatives is assumed to be determined 

through evaluation against a hierarchical model that has been rigorously created through firm 

DA methodologies.       
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I.E. Thesis Organization 

 The remainder of this thesis contains four chapters: Chapter II explores literature in areas 

pertinent to solving problems of this structure; Chapter III synthesizes concepts from the 

literature review to develop a methodology for problem analysis; Chapter IV progressively 

applies the developed methodology to a current problem and analyzes the results; finally, 

Chapter V discusses relevant conclusions and examines opportunities for further research. 
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II. Literature Review 
 
 

II.A Introduction 

 The purpose of this literature review is to explore thoroughly the areas of sufficiency and 

alternative screening in multicriteria decision analysis.  A brief description of decision analysis 

will be provided, followed by longer explorations of the aforementioned fields.  As these areas 

are less developed in the literature, a comprehensive examination will be made in an effort to 

fully understand which elements should be considered for future methodology creation.   

 
II.B Decision Analysis 

 The field of decision analysis (DA), a subset of the broader field of Operations Research, 

"provides effective methods for organizing a complex problem into a structure that can be 

analyzed" (Clemen & Reilly, 2001).  Generally, a decision maker must select an alternative that 

will best solve the problem faced.  A best practice to assist the decision maker is to create a 

hierarchical model of objectives and values according to the philosophy of value focused 

thinking (VFT).  VFT approaches a decision problem by first identifying what needs to be 

achieved -- the objectives.  These objectives are each broken down into what is desirable in an 

ideal solution -- the values (Clemen & Reilly, 2001).  These values are reduced to a set of 

measureable metrics; potential solutions are generated and then evaluated against these metrics.   

 VFT is preferred to alternative focused thinking, which simply examines the pre-existing 

set of alternatives and selects the best among them, thus eliminating the opportunity to identify 

and explore alternatives not initially considered.   

 Several desirable properties exist for the value hierarchy developed.  The hierarchy 

should exhibit completeness, meaning the evaluation considerations at each tier cover all 
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concerns necessary for overall objective evaluation.  The hierarchy must be nonredundant, so 

that no two evaluation considerations in the same tier overlap.  The hierarchy must be 

decomposable, meaning each evaluation criteria is independent of others.  The hierarchy should 

be operable, so it is easily understood by anyone who will use it.  Finally, it is desirable to have a 

hierarchy of small size while still encapsulating all necessary elements (Kirkwood, 1997).  

Ideally, the hierarchical model will provide a consistent systematic framework for alternative 

evaluation and decision justification (Dawley, Marentette, & Long, 2008).  

 
II.C Sufficiency 

 Many problems ask the fundamental question: "how much is enough?"  When evaluating 

alternatives to achieve a non-binary objective (i.e., there is not an obvious success/fail point), the 

decision maker generally acknowledges a certain minimum level of accomplishment that is 

acceptable.  Whatever alternative is chosen, it must meet this level to be considered a sufficient 

solution.  Beyond this level, a "better" alternative may provide more value toward meeting the 

objective.  However, any additional resource requirements of this "better" alternative may be too 

high to justify the marginal increase in value achievement.   

 The decision maker wishes to maximize performance on an objective or set of objectives 

while minimizing the resources necessary for that achievement.  While this fundamental question 

of sufficiency is approached in decision problems in diverse fields, little effort has been made to 

formally investigate how to establish sufficiency.  

 Military sufficiency. 

 The military deals frequently with questions of sufficiency in regards to long-term force 

structure.  Because of the lengthy defense acquisition cycle, it is vital to project what may be 

needed under a variety of circumstances.  Since the Cold War, sufficiency has been a key part of 
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the discussion on deterrence.  The United States must have "sufficient military capabilities 

available to provide a wide range of flexible options for military and non-military conflict" 

(DuBridge, 1969).  This sufficient force must be able to  

deter an attack upon the United States or its allies; respond at a level appropriate 

to situations short of an all-out attack on the United States; retaliate effectively, 

after an all-out attack on the United States; and, ensure national survival in the 

event of an attack.   (Temple III, 2005) 

In the Cold War environment with memories of Pearl Harbor still fresh, defense sufficiency 

meant maintaining a force structure with the ability to respond to any and all provocations.   

 More recently, the United States Navy studied sufficiency in its surface combatant force 

structure for a 25-year horizon (Morris, 2000).  The Navy recognized that traditional wargame 

modeling techniques based on global war theory are insufficiently broad in scope and incapable 

of high fidelity modeling, and thus inappropriate to model local warfare and non-military 

operations.  A future force structure needs to perform peacetime missions efficiently but also 

manage a quick transition to wartime readiness if necessary.    

 Traditional Cold War-era battle groups are inefficient for joint and asymmetric warfare as 

standardized groups possess either too little or too much capability.  The operating area of a 

surface combatant was modeled through location of the attack target and the reach of available 

weapons.  Large operating areas enable a single surface combatant to contribute to multiple 

tasks, which tends to reduce the number of ships needed to perform the whole set of tasks.  For 

example, strategic land-attack missions could be performed with Tomahawk missiles from 

almost any ship in the theatre, but for all other tasks the assigned ships would have to be near the 

asset being defended or attacked (Morris, 2000).   
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 The Johns Hopkins Applied Physics Laboratory developed a 'sufficiency analysis' 

methodology to determine the types and numbers of assets needed to perform a task.  The 

process decomposed a complex multi-area warfare problem into a set of single-area problems, 

solved these simpler problems, then integrated the results to obtain a solution.  Success criteria 

determined whether a set of surface combatants was able to accomplish a task at an acceptable 

level of risk.  These criteria were defined by quantifiable measures of effectiveness (MOE) with 

threshold values assigned for each measure.  The risk for a task was deemed acceptable if and 

only if all MOEs exceeded the thresholds; typical MOE thresholds were 0.9 in terms of 

probability of success.   

 One method used to set these thresholds was to find the point of diminishing return -- the 

"knee" on the curve of effectiveness versus number of assets dedicated to a task.  This did not 

account for failure consequence severity or attack likelihood, so a Naval subject matter expert 

used professional judgment to determine the amount of risk considered acceptable.  The study 

concluded that a surface force mixture should consist of fewer, highly-capable ships as opposed 

to a larger number of less-capable ships, as overall force size could be minimized while 

capability could be maximized when a preponderance of the force consisted of the very best 

ships.  The concept of sufficiency of force was developed through combining known capabilities 

with subject matter expert opinions on risk and future needs.   

 General sufficiency theory. 

 Advances in technology and changes in the international political landscape have 

transformed the role of the analyst.  Frequently, a decision must be made when it is unknown 

whether there are enough pieces of information or if the information available is of high enough 

quality to make a good decision.  The decision maker is subject to the "supervisor's dilemma", 
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defined as  "a generic situation wherein a supervisor must decide if the output product of an 

analysis is acceptably rigorous or if more analytical resources must be invested in that analysis 

process before sending it forward" (Zelik, Woods, & Patterson, 2009).  The decision maker 

wishes to know if the data available and analysis performed is sufficient to move ahead with the 

decision making process.   

 Zelik et al. develop an approach to determine analysis sufficiency based on rigor of 

process as an indicator of information sufficiency.  "Given the current analytical production 

pressures and the technology driven proliferation of data availability shaping the intelligence 

community, it's increasingly difficult to accurately judge the sufficiency of an analysis" (Zelik, 

Patterson, & Woods, 2007).  To adapt to these changes, improvement in the understanding of the 

analytical process was investigated.  Analysis sufficiency is judged on the basis of rigor in the 

analytical process.  "Rigor, as an assessment of process quality, is used in information analysis to 

communicate about the process, rather than the product, of analysis" (Zelik, Patterson, & Woods, 

2007).   

 It is difficult to know when sufficient data analysis has been performed.  By adhering to 

an accepted and rigorous analytical process, one can feel confident in the level of analysis.  

Achieving 'maximum' rigor of process is not a goal; rather, one should continually adapt the 

process of analysis to changes in the world to ensure the analysis is rigorous enough.  The 

supervisor's dilemma captures the fundamental tradeoffs inherent in analysis work, by balancing 

urgency and limited resources against the need to perform broad research to gain insight.  

 By presenting a subject pool of analysts and decision makers to the structure of an 

analysis (not the actual analysis itself), Zelik et al. attempted to gain an understanding of how 

process influences quality.  The data indicate that providing insight into an analysis process 
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influences assessments of both process rigor and product quality.  Participants made insightful 

comments about the quality of an analytic process based on product quality, but these 

perceptions were apt to change with the addition of process insight.  This distinguishes perceived 

rigor, based on cues inferred from an analytic product, from effective rigor, based on insight into 

the analytic process; these two areas may not always be aligned.  Subject responses demonstrated 

there is no one right way to perform analysis.  Different practices can produce acceptable results, 

and approaches can be valid even if not completely understood.   

 This examination of process as a measuring stick for analysis sufficiency helps prevent 

overconfidence in inadequate analysis (and likewise underconfidence in strong analysis).  Such 

overconfidence in superficially-adept analysis can lead to catastrophic results.  The investigation 

into the loss of the space shuttle Columbia showed that critical decisions were made based on 

analyses that appeared to be thorough but was in reality of low rigor.  Using the strength of 

analysis as a proxy for product quality advances the true goal of the analytic effort -- not 

providing individual facts or reports, but providing information and understanding in a 

meaningful context (Zelik, Patterson, & Woods, 2007). 

 The supervisor's dilemma does not advocate 'maximum' rigor, it concerns determining 

what is sufficient rigor when balancing in the costs of further work.  In this sense, dedicating 

further resources to a problem -- resources that could be allocated elsewhere -- can actually 

decrease the value of that research.  The theory of "just barely good enough" (JBGE) in agile 

modeling and computer programming suggests that time and effort spent above and beyond the 

minimum requirement adds little extra functionality to the solution and decreases the overall 

value of the product as the cost to capability ratio increases.  The JBGE model, by including the 

cost of a solution in the overall understanding of "value" obtained, presents the most efficient 
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solution possible.  It does not imply low quality, as the threshold for sufficiency is set at what is 

acceptable.  The point when JBGE is reached is situational and dynamic as needs change, and 

generally comes sooner than expected (Ambler S. , 2002).   

 If a model or solution must meet a pre-determined requirement, then once it hits that 

sufficiency level -- once it is good enough for effective use -- then anything beyond that is a 

waste of time or money.  The point of diminishing returns has been reached; further capability 

might be added, but it is not necessary and comes at a higher cost than minimum development, 

thereby decreasing overall value.  The graph of value of performance when cost is considered as 

a function of effort, shown in Figure 2, is not a monotonically increasing function but a parabola 

with the local maxima representing the JBGE point.  This point achieves the highest possible 

value as a function of cost, as any less effort produces insufficient capability, while any more 

effort produces more, unneeded capability, at a higher cost that diminishes overall return.   

 

Figure 2: Just barely good enough (Ambler S. W., 2009) 
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 Three key tenants must be followed with respect to this theory.  First, JBGE is situational, 

in that what defines 'good enough' changes based on the ultimate needs both now and in the 

future.  The point of JBGE may shift as demands change.  Re-working a product to meet a less 

complex requirement is wasted time, unless the current version decreases value elsewhere, as 

may be the case when the model is used to determine data analysis needs.   

 Second, any requirement must be clearly agreed upon by the analyst and the user/decision 

maker, so that the product is good enough to function and that effort is not wasted on 

functionality that will not be used.  Finally, and most importantly, the point of JBGE comes 

quicker than expected, as the value in modeling "comes through improved communication and 

ability to think things through, and that this value peaks rather quickly" (Ambler S. W., 2009).  

Human nature is to err on the conservative side, but this must be avoided as not to waste 

resources.  Development should aim for sufficiency.  

 Sufficiency in fields of study. 

 Though the literature contains limited investigation into the theory of sufficiency in data 

analysis, concepts of sufficiency in application to a specific field are discussed more 

prominently.  Much research has been devoted to the concept of a sufficient statistic -- a statistic 

which has the property of sufficiency with respect to a statistical model and its associated 

unknown parameter, such that "no other statistic which can be calculated from the same sample 

provides any additional information as to the value of the parameter to be estimated" (Fisher, 

1922).  Most commonly used in regards to discovering an underlying distribution, a statistic is 

sufficient if the sample from which it is calculated gives no additional information than does the 

statistic.   
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 An example of this application is determining how much data is necessary to be confident 

in the distribution of a population of unknown size.  Veres et al. studied sufficiency in biometric 

data collection, estimating how many subjects are needed to cover diversity of population in gait 

and how many samples per subject are needed to provide representation of the similarities and 

differences in the gait of a single subject.  Their investigation into when the data is sufficient to 

have statistically significant results for chosen values of Type 1 and Type 2 error reinforces the 

concept of diminishing returns on data collection.  After some population size, the number of 

subjects needed to characterize that population stays practically the same, and there is almost no 

value in expending resources to collect further data (Veres, Nixon, & Carter, 2006).   

 A similar question of how much data is sufficient to determine an underlying trend is 

found in the analysis of physician performance.  Measuring the true quality of physician 

performance is important to a range of healthcare initiatives.  Most tools use a performance ratio 

based on the number of patients with the diagnosis of interest, with a minimum number of 

patients needed to establish a valid physician score.  For a single performance measure with a 

high level of unreliability, as many as 100 patients with a particular condition might be necessary 

to measure a physician's performance (Lumetra, 2005).   

 However, the amount of data needed can be reduced by using a composite score, 

combining performance results across multiple single indicators of performance.  Such 

aggregated measures reduce the unreliability in the measurement and thus the number of patients 

with a particular medical condition needed.  As few as 25 patients per doctor may be enough to 

compute performance measures that accurately discriminate performance among providers.  The 

key is to use the right mix of data sources, which is unique to each problem.  Combining 

different types of data, each with a different reliability level, can provide a clearer picture than a 
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larger amount of a single type of data.  It may be possible to more quickly gain insight into the 

characteristics of the subject of study through the use of less, but aggregated, data. 

 The use of less data than is expected to be necessary is important to resource 

conservation.  Monitoring traffic system intersections to determine real-time flow distributions 

requires significant resource investment, as "control systems are often hungry for extensive 

detector information from a rich detector configuration" (Lan, 2001).  Lower levels of 

information may be sufficient for the control system to perform its task.  Reducing the collectors 

needed to determine system behavior in one area allows for additional information to be gathered 

elsewhere, increasing overall system knowledge.   

 Lan investigated how partial sets of detectors provide less, yet still sufficient, 

information, albeit with the penalty of less accuracy and greater variability.  In a simple three-

way intersection example, a configuration with five detectors instead of six can still provide 

necessary and sufficient data for system control.  More generally, testing on the Jacobian matrix 

of the predicted parameter outputs of traffic count at an intersection can determine whether a 

detector configuration can provide sufficient information for flow estimation.  With this method, 

"as long as one can generate an a priori reasonable set of input counts, no actual data are needed 

to perform [the analysis]" (Lan, 2001).  The capabilities of the system can be examined based 

solely on its own properties, without the need for exact performance data.   

 In the traffic example, a set of detectors must continually monitor the changing status of 

the system.  The field of change point analysis provides techniques to determine when an abrupt 

change in state occurs.  Discovering when a party of interest makes a change is vital to 

intelligence gathering.  For example, an enemy base may store a certain number of tanks -- this is 
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the default state.  When the tanks are no longer at the base, the state has changed, and the analyst 

can then try to determine where the tanks went and what this may mean in the larger scheme. 

 In such situations, change point theory may be applied.  Commonly used in industrial 

quality control, change point detection (also known as statistical process control) is used to 

continuously monitor a process and determine when an underlying distribution has changed.  

Consider a manufacturing plant manager who is interested in detecting when the quality of the 

product has decreased.  While a single observation can be used (i.e., a certain measurement on a 

widget must be within a tolerance to meet the specification), it is also possible to observe a 

process through multiple data streams.  This multivariate surveillance is useful if any number of 

potential changes to different parts of a system can indicate a change point.  A surveillance 

procedure should have a high probability of detecting a change within a reasonable period of 

time, with a low probability of false alarm (Wessman, 1998). 

 If dense data streams are monitored automatically, an alarm procedure must be developed 

to identify the change point.  This can be done through a univariate process based on a 

summarizing statistic, or analysis of the separately-monitored component processes.  Wessman 

explored a likelihood ratio-based surveillance procedure in processes where a sudden shift occurs 

between two fully-specified alternatives that is reflected in all component processes.  In a 

multivariate manufacturing example, the physical breakdown of a machine or machine part 

would cause a number of observable data distributions to suddenly change.  In an intelligence 

situation, a large shift in enemy equipment would result in a change to the "distribution" of the 

expected observation. 

 Wessman examined sufficient reductions to change detection methods that do not suffer 

from significant loss of efficiency.  For processes where the change is between two fully 
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specified alternatives, when the change points from multiple intelligence streams occur 

simultaneously, a univariate likelihood ratio statistic method is sufficient for detecting certain 

critical events.  Correspondingly, a good surveillance procedure can utilize this univariate 

process.   

  Interest in continual statistical surveillance with regards to intelligence gathering has 

increased in recent years, with the aim of determining when an important change in an 

underlying process has occurred (Frisen, Andersson, & Schioler, 2009).  This type of 

surveillance involves collecting data from several related variables, calling for multivariate 

surveillance techniques.  Optimality in terms of data collection is hard to derive and even hard to 

define in such multivariate problems.  It is possible that multivariate surveillance problems can 

be simplified by the sufficiency principle, which states that all conclusions to be drawn should 

depend only on a sufficient statistic. 

 In intelligence surveillance there is the potential for complex relations between change 

points, ranging from simultaneous changes to independent changes.  One method for 

simplification is to reduce the variate vector into one statistic and then use a system for 

univariate surveillance on this statistic.  Monitoring each variable separately, in a combined 

univariate method, is also possible.  A common method to combine the information is to signal 

the alarm at the first time that any of the univariate methods gives an alarm (Frisen, Andersson, 

& Schioler, 2009).  In a situation where only one process changes, the performance is 

considerably improved if this knowledge is utilized in the surveillance procedure. 

 
II.D Alternative Screening 

 Once sufficiency requirements for a set of alternatives have been determined, the set 

should be screened to isolate quality alternatives.  Screening criteria are used, each of which 
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"consists of an attribute and a cutoff level which divide areas [alternatives] into those which are 

acceptable and those which are not" (Keeney, 1980). 

 Belton and Stewart (2003) state that "sometimes the problem is not one of generating 

alternatives, but one of identifying an appropriate and manageable set for detailed evaluation 

from a much larger set of possibilities -- a screening process."  The set should be made up of 

"good" alternatives, or alternatives which represent the range of possibilities.  Strategies to 

accomplish this include bounding the space of promising alternatives, or using a simplified 

assessment model.   

 Chen (2006) observes that "during the past few decades several different methods have 

been separately put forward to deal with screening problems.  But there has been no systematic 

exploration of this topic in the literature, and researchers on sorting [ordering solutions] have 

paid little attention to it."  Similar to sufficiency theory in data analysis, there has been little 

advanced investigation into how screening criteria should be established.  Instead, general 

guidelines for screening advocate caution.  

 Performance screening. 

 Various options for screening on alternative performance are available.  The following is 

a partial list developed by the National Institute of Standards and Technology.  For each of these 

screening methods, the threshold levels are set by subject matter experts. 

Dominance 
An alternative is dominated if another alternative out-performs it with respect to 
at least one attribute, and performs [at least] equally with respect to the remainder 
of attributes. With the Dominance method, alternatives are screened such that all 
dominated alternatives are discarded. The screening power of this method tends to 
decrease as the number of independent attributes becomes larger. 
 
Conjunctive (“Satisficing”) 
The Conjunctive method is purely a screening method.  The requirement 
embodied by the Conjunctive screening approach is that in order to be acceptable, 



21 
 

an alternative must exceed given performance thresholds for all attributes. The 
attributes (and thus the thresholds) need not be measured in commensurate units. 
 
Disjunctive 
The Disjunctive method is also purely a screening method. It is the complement 
of the Conjunctive method, substituting “or” in place of “and.” That is, to pass the 
Disjunctive screening test, an alternative must exceed the given performance 
threshold for at least one attribute. Like the Conjunctive method, the Disjunctive 
method does not require attributes to be measured in commensurate units. 
 
Lexicographic 
Using this method, attributes are rank-ordered in terms of importance.  The 
alternative with the best performance on the most important attribute is chosen. If 
there are ties with respect to this attribute, the next most important attribute is 
considered, and so on.  (Norris & Marshall, 1995) 

 
 Given the lack of direction in screening theory, many multicriteria decision problems 

utilize rudimentary screening techniques to conservatively eliminate undesirable alternatives.   

 In the field of mineral extraction, a company must make a binary decision whether to drill 

for ore.  This decision is based on data indicating if the lode is large enough and of sufficient 

quality to invest significant resources.  Verma (2001) investigated the application of fuzzy logic 

in mineral resource evaluation.  Screening criteria were established for mineral quality measures 

of performance, then instead of crisp cutoffs, a fuzzy logic process for combining measures was 

used.  Measure sensitivity analysis allowed for more rigorous determination of the sufficiency of 

the deposit for drilling. 

 The United States Forest Service (1999), while developing a monitoring program for the 

environmental health of forests in the Northwest, suggested the following criteria for measures 

used for screening:   

 - the dynamics of the measure parallel the larger system 

 - the measure shows a short-term but persistent response to change in the status of the 

 system 
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 - measure can be accurately and precisely estimated (high signal-to-noise ratio) 

 - likelihood of detecting a change in the measure performance is high, given a true system 

 change 

 - low natural variability, and changes in measure values can be distinguished from 

 background variation 

 - cost of measure obtainment is not prohibitive 

While not all of these characteristics will apply to each screening problem, the Forest Service 

emphasizes that measures should be good reflections of the alternatives they are measuring, 

especially when used for screening. 

 Feasibility screening. 

 The previous section discussed screening methods based on alternative performance.  

Another option is feasibility screening -- the United States Department of the Interior Bureau of 

Reclamation advocates only eliminating alternatives that are impossible, as anything that is 

possible must have its effort of implementation evaluated as part of its scoring.  If a possible 

alternative is eliminated because it seems too difficult prior to a full evaluation, a solution may 

be missed.  Only options with "fatal flaws" should be eliminated (Reclamation's Decision 

Process Guide). 

 If an alternative (or set of alternatives) is capable of providing value, then it should not be 

eliminated.  Parnell et al. state: 

Screening criteria should avoid targeting feasible but less desirable alternatives.  
Feasibility screening sifts out alternatives based on non-negotiable criteria.  For 
all others, finding the best trade-offs will lead to the perfect solution….  All 
feasible alternatives become solution candidates.  Balancing trade-offs to find the 
preferred solution is accomplished by enhancing and measuring solution 
candidates.  (2008) 
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 Screening criteria should not be so strict that sufficient but superficially undesirable 

alternatives are eliminated.  Determining which alternatives are undesirable is the task of 

performance screening.  By eliminating alternatives prematurely, the power of the process is 

reduced.   

 This leads to the question of how "non-negotiable" is defined, and how such criteria 

should be established.  These absolute criteria are established by real-world limitations for the 

problem at hand and the firm demands of the subject matter experts consulting on the problem.  

Parnell suggests screening should be done at the 'needs' level, not at the 'wants' or 'desires' level.  

Screening criteria should be used to ensure solutions meet minimum requirements.  These 

criteria can then be consulted as alternatives are designed, modeled and analyzed.  Belton and 

Stewart state that any such process should: 

screen alternatives in order to exclude ones which are 'non-compliant' in that they 
do not meet certain minimum specifications.  This should always be done with 
care, making sure that a degree of non-compliance on one criterion could not be 
compensated for by exceptional performance elsewhere.  (2003) 
 

It is warned not to screen on individual measures when overall alternative performance can be 

improved by success in other measures.  Belton and Stewart advocate using a subject matter 

expert panel to create screening criteria to reduce the alternatives to a smaller set, of which the 

ideal solution probably exists.   

 Keeney (1980) advocates using a two-step process, in which absolute requirements 

dictate screening criteria.  Once alternatives have been screened for feasibility, a set of 

evaluation criteria are developed.  Each alternative is then scored against the evaluation criteria 

for sorting.  The initial screening criteria, generated by real-world limitations, eliminate options.  

The evaluation criteria, developed by subject matter experts, are used to sort alternatives relative 

to each other. 



24 
 

 Definitions. 

 Chen et al. (2008) performed research on screening in multiple criteria decision analysis, 

screening alternatives in multiple criteria subset selection, and distance methods for multiple 

criteria decision aid.  Their work provides techniques to reduce the number of alternatives in 

multiple criteria subset selection problems, thereby making it less difficult to find a good 

portfolio.  The main objective of screening is to remove inferior alternatives from the set of 

available alternatives, so that those remaining can be investigated in more detail, using more 

accurate data or more refined assessment criteria.   

 When utilizing preference expressions on values and weights to form a decision support 

system, resulting alternatives may be similar.  Caution should be used, as screening should 

provide the decision maker a range of options that emphasize different attributes.  The analyst 

should be careful not to "stack the deck" in favor of a particular set of values, nor yield a set of 

options that are essentially similar (Chen, Kilgour, & Hipel, 2008). 

 In a MCDA problem there exist a number    of alternatives    , the complete set of 

which is identified by  

   

  (4) 

   

Alternatives are evaluated against each metric, or measure,    ; the group of    measures 

comprises  

   

  (5) 
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The performance of an alternative    for a measure    is represented by    , as shown in 

Table 3. 

Table 3: Performance matrix 

      

      

      

      

      

      

  

 The decision maker may value increasing an alternative's measure performance until a 

point is reached when little additional value is created.  A low level of performance in a measure 

may have very little value to the decision maker; value would be achieved only when a rough 

threshold is cleared.  The true value of an alternative's performance in a measure is not always a 

linear function, and is expressed as:    

     

  (6) 

   

where the value    of the performance is determined by the value function    established by 

the decision maker.  The value vector of an alternative's performance in the set of measures is 

represented by:  

     

  (7) 
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 Different measures may have different levels of importance to the decision maker.  Thus, 

it is necessary to assign a global weight    to each measure    .  Weights are non-negative 

and sum to one: 

     

  (8) 

  (9) 

   

with the weight vector    .  

 In the basic case, once the measure performance and values have been evaluated, the 

aggregate value score for an alternative,    , is calculated: 

     

  (10) 

   

 Once the value scores for each alternative are derived, the decision making can begin:  

choosing the best alternative, ranking the alternatives, or sorting the alternatives into groups 

(Chen, Kilgour, & Hipel, 2008).  

 Screening, the next analytical step, selects a non-empty subset of    (defined as    ) 

that hopefully contains the ideal solution,    .   

     

  (11) 

  (12) 
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The set of alternatives eliminated by a screening procedure is represented by    : 

     

  (13) 

   

The process of screening is represented pictorially in Figure 3.  

 

Figure 3: Screening schematic (Chen, Kilgour, & Hipel, 2008) 

 
 For a sorting screening procedure, when alternatives are divided into two (or more) 

preference groups, only preferences between groups can be made, not between alternatives 

within the same group. 

     

  (14) 

  (15) 
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where    is defined as    is preferred over    , and     is defined as    is 

neither more or less preferred than    . 

 Screening eliminates poor alternatives to allow further analysis to focus on quality 

alternatives.  A screening process should possess three characteristics: safety, efficiency, and 

good information.  

 A screening procedure is safe iff:  

     

  (16) 

   

A safe screening procedure ensures the ideal choice remains in the screened set. 

 Given two safe screening procedures    and    ,    is more efficient than    if  

  .  The more information the decision maker provides, the more alternatives can be 

eliminated.  Thus, screening procedure    must be based on better information than screening 

procedure    .   

 When an initial screen is insufficient for the decision maker, Chen et al. (2008) advocate 

the sequential use of various screening methods to arrive at a subset of alternatives for further 

examination.  

 Kilgour et al.(2004) explore subset selection knapsack problems.  Current screening 

techniques are poorly suited for subset selection problems as they can eliminate choices that, 

when combined with other alternatives, would produce the best possible subset.  In a resource-

constrained knapsack problem, not all individually dominated alternatives can be safely removed 

from consideration.  However, several conditions exist in which a dominated alternative cannot 

possibly belong to an optimal subset.  Without constraints, the problem simply becomes an m-
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best alternative problem.  Finally, sensitivity analysis on weightings should be conducted so 

alternatives are not eliminated that belong to an ideal subset under slightly different conditions.   

 Dominance can be used for screening.  If an alternative is worse than another alternative 

in all performance or capability measures, then depending on the problem type the dominated 

alternative can be discarded (Kilgour, Rajabi, Hipel, & Chen, 2004).   

     

   

  (17) 

   

 Distance method. 

 Chen et al. developed a case-based distance method to screen alternatives.  Obtaining 

accurate decision maker preference on weights and values can be difficult, so this method 

discards that process.  Instead, a test set of alternatives is presented to the decision maker who 

chooses which subset of the test set is acceptable.  This test set may include real past decisions, 

fictitious but realistic alternatives, and a representative subset of familiar alternatives. 

 A test set    must contain alternatives that mirror all aspects of the real alternatives 

under consideration, including identical measures.  The distance method proposed by Chen et al. 

(2008) suggests that the acceptable alternatives    should be 'close together', while the 

unacceptable alternatives    should be 'outside'    such that: 

     

  (18) 

  (19) 
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Thus,  

     

   (20) 

  (21) 

   

 The test set is used to estimate the measure weights    , as well as a distance threshold  

  The normalized distance of the alternatives in    from the ideal (and imaginary) 

center of    is less than    , while the normalized distance of the alternatives in    is greater 

than    

 Using the weighting developed from this test set, a distance-based screening procedure is 

used to evaluate the real alternatives in    .  Alternatives within a certain distance of the 

imaginary ideal alternative    , the centroid of    , are selected for further analysis.  With  

  and    , the measure performance of the ideal alternative is determined by: 

     

  (22) 

   

 With the properties of    calculated, a weighted squared Euclidian method provides 

distance information.  For all    , the normalization factor is defined as: 

     

  (23) 
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Thus, the distance between    and    for    is: 

     

  (24) 

   

and the distance between    and    for    is 

     

  (25) 

   

The total distance between    and    is 

     

  (26) 

   

 Here,    is calculated using an optimization procedure (Chen, 

Kilgour, & Hipel, 2008).  However, if weights are known from the decision maker, these can be 

used instead.  Similarly, if the decision maker can outline a true perfect alternative, its measure 

performance can be used in lieu of the centroid of    .  Applying the distance procedure to the 

set of real alternatives, the total distance between   and    is 

     

  (27) 
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and 

     

  (28) 

   

 The distance threshold    is also calculated from the optimization procedure, and is 

derived from    , the set of acceptable test alternatives.  Alternatively,    can be adjusted to    

by the decision maker to reduce or expand    to an acceptable level.  The screened set    is 

defined by:  

     

  (29) 

   

When using a distance method, screening procedure    is more efficient than screening 

procedure    if  the subset of alternatives produced by    is contained within the subset 

produced by    .  The screening procedure that produces the smallest safe subset is deemed 

efficient.  This distance based screening procedure is illustrated in Figure 4.   
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Figure 4: Case based distance method screening procedure (Chen, Kilgour, & Hipel, 2008) 

 
 

II.E Summary 

 This chapter presented first a brief review of the concepts of decision analysis and value 

focused thinking.  Further discussion on these areas can be found in the cited materials.  A 

deeper exploration was then made of sufficiency and alternative screening. 

 The literature strongly suggests sufficiency to be defined by those familiar with the 

problem, including the decision maker and subject matter experts.  Defining the level of 

performance sufficiency is important, as any effort beyond the requirement may be a waste of 

resources.  Several studies have found sufficiency may be reached with less data than expected.  
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Regarding military sufficiency, it is important to account for all possible scenarios to ensure 

flexibility and readiness.   

 Previous research advises caution when screening and sorting.  Performance screening 

should be conservative, as not to eliminate potentially-good alternatives if conditions change.  

Many advocate eliminating only impossible solutions, defined by laws of nature or strict decision 

maker policy.         

 The next chapter combines the screening and sufficiency concepts discussed in the 

literature with Chen's distance-based procedure to develop a methodology for alternative 

screening and sufficiency evaluation in hierarchical problems with large alternative sets. 
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III. Methodology 
 
 

III.A. Introduction 

 This chapter extends the definition of the problem type under consideration and develops 

a capability-based method for initial alternative screening.  Additionally, a method is described 

to establish portfolio sufficiency levels, allowing for performance-based portfolio screening. 

 
III.B Problem Description 

 Complex decision problems can demand achievement in a large number of objectives to 

satisfy an overall goal.  In many situations, these objectives, which may be competing, are 

judged on the same core criteria.  Within each objective the criteria, or sub-objectives, may have 

varying importance.  A potential solution is then evaluated on these sub-objectives to determine 

how well it meets the objectives and thus the goal.  When a large alternative set exists, the 

problem can easily grow too large to precisely evaluate all alternatives or combinations of 

alternatives, either from a data collection or computation standpoint.  In situations such as this, it 

is beneficial to trim the number of alternatives to a more manageable set.  This smaller set of 

quality alternatives can then be examined more closely.   

 Consider a company that wishes to achieve internal control over its transportation needs. 

The chosen strategy is to procure a fleet of vehicles that fulfills a variety of needs:  long haul 

transportation of goods, local transportation of goods, executive transportation, etc.  Each of 

these need domains represents an objective for the company; an appropriate solution will procure 

enough vehicles of different types to meet all objectives and thus meet the overall goal of 

transportation control.   Notably, these objectives compete: a vehicle that is effective at long haul 
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transportation of goods is poor at executive transportation.  Two of these objectives, for 

simplicity given equal importance, are shown in Figure 5. 

 

Figure 5: Company trasportation objectives 

  

 Any vehicle could theoretically achieve some level of value in each objective (even if 

that value is very close to zero).  As such, each objective is evaluated on the same set of vehicle 

capability sub-objectives.  A sample of sub-objectives used to determine objective achievement 

may be: highway performance (HP), goods capacity (Cap), and passenger comfort (Comf).  

However, as objective requirements vary widely, the sub-objectives under each objective are 

weighted differently, as seen in the superscripts.  Figure 6 expands on the Figure 5 hierarchy by 

adding three evaluative sub-objectives under each objective. 

 

 

Figure 6: Identical sub-objectives define each objective 

 

Objectivesweight

Overall Goal Meet transportation needs

Long haul0.5 Exec travel0.5

Sub-objectivesweight

Objectivesweight

Overall Goal Meet transportation needs

Long haul 0.5

HP0.4 Cap0.5 Comf0.1

Exec travel 0.5

HP0.2 Cap0.0 Comf0.8
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 Achievement in a sub-objective is determined by value obtained in set of associated 

performance measures.  Data is gathered directly on the performance measures.  In this example, 

highway performance is measured through cost per mile traveled (CPM).  Capacity is measured 

in two parts: goods capacity and people capacity.  Comfort is measured through the amenities 

available to a passenger.  Measures may be categorical; with comfort, increasing value is 

assigned to escalating luxury level.  The updated performance hierarchy is shown in Figure 7. 

 

 

Figure 7: Performance measures determine sub-objective value achievement 

 

The vehicles available for purchase are the alternatives.  The company can select a 

portfolio of vehicles that best meets its transportation needs by evaluating each possible portfolio 

against the performance hierarchy.  As there are hundreds of vehicles on the market to choose 

from, there exists a very large number of possible portfolios.  Eliminating some of these vehicles 

from consideration will reduce the number of possible portfolios and allow for more manageable 

evaluation. 

 
 

 

 

Measuresweight

Sub-objectivesweight

Objectivesweight

Overall Goal Meet transportation needs

Long haul0.5

HP0.4

CPM1

Cap0.5

Goods0.9 People0.1

Comf0.1

Amen1

Exec travel0.5

HP0.2

CPM1

Cap0.2

Goods0.4 People0.6

Comf0.6

Amen1
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III.C Hierarchy Consolidation 

 Background.  

 This problem is currently structured with a performance-based hierarchy.  The standard 

evaluation method is to gather precise performance data across all measures for all alternatives.  

If the number of alternatives is very large, this data may be difficult or even impossible to obtain.  

When the solution involves selecting a portfolio, each of which requires evaluation against the 

hierarchy, the combinatorial nature of evaluating all possible alternative combinations becomes 

prohibitive.  To use the hierarchy at a later time, alternative performance data must be updated, 

requiring significant recollection cost.   

 To combat this difficulty, the problem structure can be transformed from a performance-

based hierarchy to a capability-based hierarchy.  As the sub-objectives are the same for each 

objective, the sub-objective local weights can be transformed into global weights and summed, 

thus determining which sub-objectives are most important to the overall goal.  Then, the large 

multi-objective performance-based hierarchy is reduced to a capability-based hierarchy featuring 

only sub-objectives.  To determine their potential contribution to the overall goal, alternatives 

can be rated on a binary capability scale of whether they contribute to a sub-objective, and true 

performance data (which may be difficult or impossible to gather) can be ignored.  Sub-objective 

value functions or even exact measures of performance are no longer necessary, greatly 

eliminating data collection costs.  In this way, alternatives that offer high capability can be 

identified as likely to be included in a good portfolio. 

 Approach.  

 A decision problem can be structured in three different ways.  The decision maker can be 

tasked with i) selecting the best alternative from the set    , ii) sorting    into different groups 
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that are arranged in a preference order, and iii) ranking the alternatives of    from best to worst 

(Chen, Kilgour, Hipel 2004). 

 The procedure presented here focuses on the second structure, specifically sorting the 

alternatives in    into two groups -- one selected for further examination   and one to be 

eliminated    .  This will be accomplished by evaluating alternatives on the new capability-

based hierarchy.  This approach can be used on problems where the sub-objectives are identical 

for a set of objectives and alternative capability (if an alternative is designed to exhibit a specific 

capability) is understood.   

 True alternative performance for a capability is not necessary, nor is a value function 

relating that performance into sub-objective value achievement.  In this procedure, sub-objective 

and measure weights are known via subject matter experts and/or the decision maker, as is the 

performance of an imaginary ideal alternative.  Both of these pieces of information are generally 

easily obtained; if necessary, this information can be obtained indirectly using the method of 

Chen et al., a linear programming optimization procedure using alternative test sets.   

 Procedure. 

 A multi-criteria decision analysis problem is explored in which a series of top objectives 

 are all evaluated on the same set of sub-objectives    .  Each objective is distinct, yet the 

underlying hierarchy is repeated, as shown in Figure 8.  The performance measures may be 

evaluated differently among the sub-objectives, as appropriate and needed. 
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Figure 8: Full performance-based hierarchy 

  

 While the sub-objectives are the same for each objective, they may possess different 

importance depending on the objective, and thus are assigned appropriate local weights.  The 

objectives can have different importance to the overall goal, but for simplicity here they are all of 

equal weight.  This is a small performance-based hierarchy with only two objectives; a complex 

multiobjective decision analysis problem may have over ten objectives, generating dozens of 

sub-objectives and potentially hundreds of measures.  If perhaps 20 alternatives are under 

consideration, data for thousands of performance measures must be gathered.  This would 

require significant resource allocation for the initial evaluation; any future change in 

performance measures or alternative capability would require additional data collection.  Most 

importantly, evaluating every combination of the 20 alternatives against the entire hierarchy 

would demand significant time and resources.   

 It is necessary to reduce the performance-based hierarchy to a capability-based hierarchy.  

To do this, the measures are ignored while the sub-objectives are featured.  The sub-objective 

local weights are transformed to global weights, as shown in Figure 9. 
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Figure 9: Elimination of performance measures 

 
 In the example shown in Figure 9,    , and    , the number of distinct 

sub-objectives.  The goal of this transformation is to determine which of the    sub-

objectives    are most important.  It follows that alternatives that provide that capability in the 

important sub-objectives are highly desirable.  Here,    is the total global weight of    , while  

  is the global weight of    .  There are    objectives. 

     

  (30) 

  (31) 

   

The vector    provides the relative importance of the sub-objectives towards meeting the entire 

set of objects.  This creates the capability-based hierarchy seen in Figure 10. 
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Figure 10: Capability-based hierarchy 

 

 Now, an alternative is evaluated directly on the sub-objectives -- specifically, if it is 

designed to provide a capability.  If yes, then the alternative scores a "1" for that sub-objective; if 

not, the alternative scores a "0."  Instead of a number of precise performance measure data points 

for each alternative, only knowledge of whether that alternative is designed to achieve capability 

in a sub-objective is needed.  Evaluating each alternative against the reduced hierarchy allows 

for   to be screened into    and    , with size of each according to the rigor required by the 

decision maker.   

 
III.D Alternative Screening 

 Once a large performance-based hierarchy is converted to a capability-based hierarchy, a 

modified distance method can be used to screen the alternative set.  As previously described,   

  , the set of alternatives considered.  Alternatives are evaluated against each 

sub-objective    in the reduced capability-based hierarchy.  The group of    sub-objectives 

comprises   .   

 In this methodology, an alternative is evaluated simply on whether it is designed to 

provide a capability in a sub-objective.  Measure performance    and resulting measure value  

  become obsolete.  Instead, an alternative's performance in a sub-objective, defined as    , 

Sub-objectivesweight

Overall Goal G

s1
0.55 s2

0.45
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is based purely on capability, and becomes a binary 0 or 1 response.  Thus, the value an 

alternative achieves for that capability in a sub-objective, defined as   , is also a binary 

response.  The set of values for the sub-objective capabilities of alternative    is represented by 

  , a string of 0s and 1s.   

 As different sub-objectives may have different levels of importance to the decision 

maker, the reduction procedure changes local weights (assigned by subject matter experts) to 

global weights    for each sub-objective    , with    and the weight vector  

  .  

 Once alternatives are scored against the capability-based hierarchy, various screening 

procedures can be assessed.  In a basic approach, one could screen based on total value to keep a 

certain number of alternatives that provide the highest independent capability.  Or, one can 

remove dominated alternatives.  For example, if an alternative provides capability in a certain set 

of sub-objectives but there exists another alternative that provides those same capabilities plus 

more, the first alternative is dominated and would be removed.  Care must be taken when 

applying such aggressive screening without considering performance, and should only be applied 

to specific problems when capability is truly binary with little performance variation.    

 Finally, one could evaluate portfolios of alternatives in a knapsack-type procedure to 

ensure no capability gaps exist (a danger when screening based on highest independent 

capability).  This procedure can be implemented if additional constraints exist -- number of 

potential alternatives, cost of alternatives, etc. -- and can be structured to the specific problem 

through linear programming techniques.    

 A modified distance-based screening procedure is used to evaluate the real alternatives in  

  .  The subject matter experts have provided the local sub-objective weights (which the analyst 
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has changed to global weights) and the ideal alternative    is known -- that which provides 

capability in every sub-objective.  Alternatives within a certain distance of    are selected for 

further analysis.    

 With the properties of the ideal known, 

     

  (32) 

   

the weighted squared Euclidian method previously presented provides distance information.  For 

all    , the normalization factor is now reduced to: 

  

 (33) 

  

Thus, the distance between    and    for    is 

  

 (34) 

  

and the distance between    and    for    is 

     

  (35) 
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So, the total distance between    and    is 

     

  (36) 

   

and   = {   , where    is set by the decision maker to select a certain screened 

sample size.  Increasing    increases the number of alternatives in    .   

 Each alternative is examined for dominance.  Starting with    ,   is computed, then  

  is compared to    ;  if    contains  's in the same vector positions as another   

, and that    contains a    in an additional position, then    is dominated and removed from  

  .  This is repeated for   .   Again, caution should be used when implementing this 

rudimentary screening procedure to ensure helpful alternatives are not eliminated.  

 Alternatively, dominance can be used to screen by eliminating alternatives that only 

provide strength in the sub-objectives with lowest global weight.  If an alternative only provides 

functionality to an area of low concern, it will not be among the highest-rated alternatives and 

will probably not appear in a highly-ranked portfolio.  These simple methods of removing 

alternatives to reduce the model size can help when later running performance-based models 

with lengthy computing times.  As previously stressed, truly eliminating alternatives risks 

accidentally removing a piece of an ideal portfolio; screening should be performed carefully and 

depend on the specific problem under evaluation.  Screening methods to differentiate "good" and 

"poor" alternatives can be used to compile a quality portfolio to begin a search algorithm; 

starting with a solution closer to the ideal will lower search times. 
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III.E Sufficiency Evaluation 

 The methodology developed thus far can be used when the process of gathering accurate 

performance data on a large set of alternatives or alternative combinations is costly or even 

impossible.  It is used to screen alternatives to reduce the size of the alternative set.  Next, the 

analyst must evaluate the remaining possible portfolios, ensuring the portfolio alternatives are 

sufficient to satisfactorily solve the problem.  The analyst should set the distance threshold    to 

reject truly insufficient solutions while allowing sufficiently helpful solutions to remain.  In a 

problem with limited data this may be difficult; there is little guidance in the literature on how to 

determine which solutions may be sufficient.  Previous work leaves this problem element to the 

decision maker or subject matter experts.   

 Combining input from the top-level decision maker and bottom-level analysts, a 

minimum sufficiency level for portfolios of alternatives can be established.  This level can be 

utilized in the secondary performance-based portfolio screening procedure.  In many situations, 

the overall minimum acceptable performance for a solution is generally know, or at least the 

desired performance.  In a problem with significant uncertainty, the difficulty is determining 

which alternative sets are likely to achieve that performance.   

 First, the analysts who generate performance measure data establish value functions for 

their specific area of expertise.  These value functions, based on past experience, feature 

increasing levels of performance on the x-axis with the value derived from that level of 

performance on the y-axis, creating a monotonically-increasing function.  While a performance-

based hierarchy may have a large number of performance measures, each value function is 

created only once -- a reasonable task given a large number of analysts with specific knowledge 

of each performance measure.   
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 Next, the top-level decision maker is asked what level of certainty he wishes with this 

analysis.  For example, is the overall decision extremely important and requires high certainty 

that the screened alternative set will work -- say, 90%?  Or perhaps a larger, less-certain set of 

alternatives would be okay -- a confidence level of 70% may suffice.  The selection of a certainty 

level is the second step. 

 Third, this certainty level is transferred back down to the analyst level.  The confidence 

percentage the decision maker selects is found on the y-axis of each performance measure value 

function graph, and the value function itself maps this level to the data analysis requirement on 

the x-axis, as shown in Figure 11.  Now, the decision maker's single input has been pushed 

through the hierarchy to determine the data needs to arrive at that level of certainty.   

 

 

Figure 11: Value function 

  

 Finally, the alternatives can be screened on whether they meet the certainty needs of the 

decision maker.  If an alternative (or portfolio) can provide the data at the levels needed by the 

analysts to meet the decision maker's confidence level, then that alternative is selected for further 

study.  If an alternative (or portfolio) cannot provide the data at the levels needed, then that 



48 
 

alternative is screened out.  Post-analysis is performed on the sufficient portfolios examining cost 

and other considerations.  Thus, a screening procedure based on data sufficiency is used to 

reduce the size of the portfolio set.   

 
III.F Summary 

 This chapter has clarified the type of problem under consideration: one in which 

achievement in a series of distinct domains is evaluated through performance in the same set of 

criteria.  Additionally, a large number of alternatives exist leading to a combinatorially-large 

number of possible portfolios to be evaluated against the hierarchy.  A methodology to reduce 

the number of alternatives was developed with the goal of greatly reducing the number of 

portfolios considered.      

 A process of transforming a performance-based hierarchy to a capability-based hierarchy 

was described.  By evaluating individual alternatives on capability, reduction in the size of the 

alternative set through the elimination of dominated alternatives is achieved.  Then, a portfolio 

sufficiency screening process was developed based on decision maker desires and analyst needs.  

The final result is a small set of portfolios ready for post-analysis and selection.   
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IV. Results and Analysis 
 
 

IV.A Introduction 
 
 This chapter applies the developed methodology to a United States Department of 

Defense Intelligence, Surveillance, and Reconnaissance (ISR) platform portfolio selection 

problem.  The problem features a large number of alternatives leading to a very large number of 

possible portfolios.  The results of various screening procedures are discussed.   

 
IV.B Background 
 
 The United States military conducts complex operations with many types of assets.  

Campaign planners traditionally use combat modeling techniques to determine the most efficient 

set of weapon assets necessary to achieve victory.  It is preferred to use the minimum set of 

assets that will provide sufficient capability to ensure success.  

   The recent proliferation of advanced information gathering assets has coincided with the 

expansion of intelligence requirements stemming from the wars in Iraq and Afghanistan.  More 

ISR assets are available to commanders than ever before.  However, the rapid adaptation of these 

new assets during wartime has led to inefficient use.  Study of ideal asset distribution has been 

largely ignored as military and civilian leadership has demanded immediate deployment in 

support of soldiers, airmen, and marines.   

 This has created difficulties in efficiently providing data to the hundreds of units that 

require information on a timely basis.  Some organizations are drowning in data as numerous 

assets stream terabytes of data to be processed.  Meanwhile, other groups are suffering from a 

lack of the data needed to develop actionable intelligence.  ISR assets are not well coordinated 

across the Department of Defense to ensure an appropriate level of information reaches each 
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user.  Additionally, the patchwork structure of ISR asset usage across services risks that the 

assets in operation may not be working in an efficient harmony to maximize data obtainment.  

An analysis of ISR capability is needed to ensure an ideal portfolio of ISR assets is deployed in 

today's joint environment and developed for future requirements. 

 Adding to the difficulty of organizing an ideal portfolio is the fundamental ambiguity on 

the effectiveness of a deployed ISR asset.  The clear objectives of typical air assets provide a 

division between mission initiation and mission success.  With strike aircraft, placing a bomb on 

a specific target provides a clear definition of mission success.  With air refueling tankers, 

loitering in a specific airspace during a specific time while transferring fuel and then returning to 

base defines a successful mission.  For ISR assets, there is no clear measure of success for a 

specific mission -- the aim is continual data gathering.  This data may later be transformed into 

actionable information to further advance the war effort, but there is not necessarily the 

immediate recognition of mission success or completeness for an ISR asset during a specific 

sortie.  

 Thus, it remains difficult to model ISR tasking appropriately.  With traditional strike 

aircraft, capability and expected effectiveness are known traits -- an F-22 can release a specific 

weapon that will inflict a known level of damage with a given level of certainty.  With ISR 

assets, the amount of pure data needed to gain a certain amount of actionable intelligence is 

variable and generally unknown.  Thus, unlike traditional force modeling where platform 

capabilities are summed until the necessary force to meet an objective is created, ISR modeling 

requires examining the amount, quality, and type of information needed and how best to meet 

this requirement.   
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IV.C Application 
 
 Hierarchy. 
 

The United States Strategic Command (USSTRATCOM), one of the ten Unified 

Combatant Commands administered by the United States Department of Defense, is responsible 

for intelligence, surveillance, and reconnaissance (ISR) operations for the United States military.  

USSTRATCOM has command authority over the Joint Functional Component Command for 

Intelligence, Surveillance and Reconnaissance (JFCC-ISR), which coordinates global 

intelligence collection for worldwide Department of Defense operations and national intelligence 

requirements (USSTRATCOM, 2010).  As the center for planning, execution and assessment of 

these areas, JFCC-ISR has been tasked to develop an ISR force sizing model.  The organization 

has used multiobjective decision analysis tools to create a hierarchical model to measure the 

quality of force capabilities.  The goal is to develop an ISR portfolio that optimizes value 

achievement.   

The hierarchy consists of seven top level objectives which define domains of ISR 

necessity, as shown in .   

 

 

Figure 12: JFCC-ISR hierarchy 

 

Some objectives are more important than others and thus are weighted appropriately; 

weights are indicated below the objectives.  Each objective is defined by an identical set of three 
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sub-objectives; the relative weight distribution among sub-objectives varies among the 

objectives.  Performance for each of the three sub-objectives is determined by three identical 

measures; the weight distribution among measures varies among the sub-objectives.  The 

hierarchy for the third objective (of seven) is presented in Figure 13.  

 
Figure 13: Objective 3 hierarchy 

 
 This top level Objective 3, with a weight of 0.448, is evaluated through three sub-

objectives which are necessary for its achievement: INT1, INT2, and INT3.  These INT sub-

objectives represent specific methods of intelligence (INT) collection.  The weight for each INT 

sub-objective, representing the relative importance to the objective achievement, is included.  All 

seven objectives are evaluated on these three sub-objectives, as each objective requires varying 

levels of the three types of intelligence data to gain understanding in the domain.  As certain 

types of intelligence are more important to some objectives, the weight distribution among the 

sub-objectives differs for each objective.   

 Finally, each INT sub-objective is evaluated on the same three measures: quality, 

timeliness, and persistence.  Raw data from an ISR asset can be obtained for these measures, 

which are rolled up to evaluate sub-objective achievement.  The weight for a measure represents 

its relative importance to achieving the higher-level sub-objective; weight distribution among the 

three measures differs among sub-objectives and across objectives. 
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 The hierarchy presented here for Objective 3 is repeated for each of the other six 

objectives.  Success in each objective domain is achieved through the same means -- 

achievement in the INT1, INT2, and INT3 sub-objectives, which are evaluated through the same 

three measures.  Thus, the seven objectives lead to 21 sub-objectives and 63 measures.  The full 

hierarchy is shown in Appendix 1. 

 Alternatives. 
 
 The Department of Defense deploys a number of assets to obtain necessary ISR data.  

Through the development of a clear statement of priorities and the derivative hierarchy, an ideal 

set of assets can be developed to meet these priorities.  This ideal portfolio may consist of any 

combination of available ISR assets.  For some assets, multiple equipment packages can be 

installed, or the asset may be flown from various locations and follow a number of routes during 

that flight.  These variables lead to a variety of possible platforms for each asset and an 

enormous number of possible portfolios.    

 Consider a universe where the Department of Defense owns the following ISR assets: 

three types of Remotely Piloted Aircraft (RPA), two types of piloted aircraft (AC), and three 

types of satellites (SAT).  These assets are described in Table 4.  Two of the RPAs can be flown 

out of two different bases; thus the number '2' is placed in the 'Bases' column for RPA1 and 

RPA2 in Table 4.  The RPAs and ACs can also be flown on different routes when deployed.  

Finally, several of the ISR assets can feature multiple equipment packages, as clarified by the 

Platform Notes.  For example, RPA1 and RPA2 each can be loaded with one of two different 

INT1 packages (INT1a, INT1b) or a package that gathers INT2 and INT3 data (INT2&INT3), 

for a total of three different packages.  AC1 and AC2 have two possible package options: the 

first is designed for INT2 but obtains some capability in INT3, while the second is designed for 
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INT3 but obtains some capability in INT2.  For initial simplicity, this "some" capability can be 

considered "half" capability, and will be expanded upon later.  All asset/base/route/package 

options are summarized in Table 4. 

 

Table 4: ISR assets 

 

 

 The number of possible platform combinations for a specific asset can then be calculated.  

For example, RPA1 can be stationed at two bases, perform six mission routes, and carry one of 

three packages (INT1a, INT1b, or INT2&INT3).  The number of possible combinations is thus 

.  AC1 can be stationed at one base, perform two mission routes, and carry one of 

two packages (INT2a&INT3a or INT2b&INT3b, with INT2 achieving full capability and INT3 

half capability), for a total of four possible combinations.  AC2 also has four combinations, but 

with INT3 achieving full capability and INT2 achieving half capability.  Following similar logic, 

the number of combinations for each asset is presented in Table 5. 
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Table 5: ISR asset platforms 

 

 

 Summing the individual options for inclusion in a portfolio results in 85 possible 

alternatives.  However, an asset can only characterize one option at a time; with only one RPA1, 

it is not possible to have two RPA1 platforms active at once.  To determine the number of 

portfolios that include all eight assets, the number of platform combinations for each asset are 

multiplied together: 

 

  However, the constraints of a selection problem may mean one must consider 

combinations of any number of ISR assets.  Because the option exists not to select an ISR asset, 

an additional platform combination must be added for each asset -- a "zero" option of not 

including an asset in the portfolio.  Table 6 reflects this additional option for each asset. 
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Table 6: ISR asset options 

 

  

 The number of possible portfolios of any size (zero to eight assets) is much larger:  

 

 With only eight ISR assets and a handful of variables for each, nearly a million possible 

portfolios are generated.  To evaluate the performance of each of these portfolios against the 63 

measures in the full hierarchy requires significant processing time.  Currently, JFCC-ISR uses a 

complex physics-based simulation program to evaluate portfolio performance.  Given the high 

fidelity of the modeling, processing time is approximately three hours for a single portfolio.  

With this rate of evaluation, a 24-processor computer network would take 

 hours, or 11.72 years, to evaluate all possible portfolios.   

 A slight modification to this problem results in even more extreme evaluation difficulty.  

The current problem assumes one each of the eight assets.  However, instead of one RPA1, what 

if there exist three RPA1?  Similarly, now there are three RPA2, and two each of AC1 and AC2.  

Certainly, the military possesses multiple copies of most ISR assets, and this example still 

contains only a few variables for each asset.  With only this modification, and leaving all other 

variables as they were, the new usage options are shown in Table 7. 
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Table 7: Multiple copies of an asset available 

 

 

 This modification results in  possible portfolio combinations.  With hierarchy 

performance of each portfolio scored in three hours by a single processor running a simulation 

program, a 24-processor computer network would take  hours, or 

 years, to evaluate each possible portfolio.  Even if the hierarchy performance of a 

portfolio could be determined in one second, the 24-processor computer network would still take 

50,849 years to evaluate all possible portfolios.  Clearly, even with several factor-of-ten 

advancements in computing power and speed, solving this problem by evaluating each possible 

portfolio combination is impractical.  Evaluating each portfolio for the full military ISR problem, 

with dozens of assets with multiple copies and hundreds of platform options, is impossible.   

 Capability Screening. 
 
 Screening the alternatives to eliminate poorly-performing assets or platforms which are 

unlikely to add value to a good portfolio can greatly reduce the total number of portfolios that 
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must be evaluated.  As previously explored, a small percentage decrease in the number of 

alternatives in a combinatorial problem can lead to an enormous percentage decrease in the 

number of combinations.  This can allow for the transformation of a problem's full evaluation 

from impractical to reasonable and allow resources to be better dedicated to refining 

performance evaluation of the smaller set.   

 Transforming the ISR performance-based hierarchy to a capability-based hierarchy is the 

first step in this screening process.  This transformation will determine which sub-objectives and 

associated measures of the seven top-level objectives are most important through the assignment 

of global weights.  Then, the  alternatives can be assessed on their capability in each area, to 

determine which assets contribute little capability and/or are dominated. 

 From the local weights provided in the original hierarchy, the global weights for each 

objective, sub-objective, and measure can be determined, as shown in Table 8. 
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Table 8: Objective, sub-objective, and measure weights 
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 Several of the sub-objective and measure global weights are zero; this is an artifact of the 

alternatives available when the original JFCC-ISR hierarchy was created, but will not negatively 

affect the validity of this analysis.  By summing the appropriate global weights, the importance 

of each sub-objective and measure can be calculated, as shown in Table 9. 

 

Table 9: Sub-objective and measure weights across all objectives 

 
 
 

  

 INT1 is the most important of the three sub-objectives, providing 61.2% of the overall 

value in all objectives, while INT2 is least important at 15.0% of the value.  The measures are 

more evenly distributed, with Persistence (37.9%) and Timeliness (36.5%) most important and 

Quality (25.7%) the least. 

 A capability-based hierarchy can be created with these global weights, shown in Figure 

14. 

 
Figure 14: Condensed hierarchy with global weights 
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Or, simpler hierarchies of only sub-objectives (Figure 15) or only measures (Figure 16) can be 

created. 

 

 

Figure 15: Condensed sub-objective hierarchy 

  

 

 

Figure 16: Condensed measure hierarchy 

 
 
 These hierarchies, reduced to the sub-objective and measure level, can now be used as 

capability-based hierarchies.  The sub-objective capability-based hierarchy allows for evaluation 

of the alternatives based on their intended INT capability.  An alternative's score is calculated by 

summing the weights for each sub-objective an alternative is designed to achieve.   
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 For example, RPA1 version 3 carries a package that gathers INT2 and INT3 data, thus 

providing capability in these two sub-objective areas.  The weights of these two areas, 0.150 and 

0.239, are summed to give a capability score for this alternative of 0.389.  Table 10 displays 

capability-based evaluations of each alternative for the initial case of single copies of each ISR 

asset.  For each alternative, the grey shading represents in which sub-objective that alternative is 

designed to provide capability; the number in each cell specifies the base/route/platform option.  

For AC1 and AC2, where each platform option is designed to accomplish one sub-objective well 

and one moderately, a "half" factor of 0.5 was used to represent this moderate capability.  The 

table is sorted from highest to lowest value score. 
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Table 10: Capability value scores 

 

 

 The assets that provide INT1 capability are most valued, followed by those that provide 

INT2 and INT3 in various combinations.  Finally, the assets that provide only INT2 or only 
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INT3 round out the bottom of the alternatives that provide value.  Of course, the "zero option" of 

not using an ISR asset results in zero value added. 

 Now that alternative capability scores have been calculated, initial screening can begin.  

The rough screening process described next creates a structure that will be built on further.  

Depending on the constraints of the portfolio selection problem, some alternatives may be 

eliminated based on pure dominance.  This elimination of alternatives based solely on capability 

scores is an aggressive screening method, and should be used with caution.  Problems with 

alternatives of clearly binary capability, without significant shades of performance, may be 

appropriate for this method.  More refined screening methods will be described later. 

 If one is allowed to select any number of assets, naturally one would choose all eight 

assets for maximum capability.  However, if a constraint exists that states only a subset of the 

total number of assets may be selected, then an asset that is dominated by another asset in a 

certain set of sub-objectives can be removed.  Suppose one wishes to maximize total value but 

also to achieve value in all three INT areas, and only two of the eight assets can be selected.  An 

asset that provides less capability than another asset in a specific sub-objective set can be 

eliminated through total dominance.  In this case, all versions of AC2 (0.314) and AC1 (0.270), 

as well as SAT3 (0.239) and SAT2 (0.150), are dominated in INT2 and INT3 by the "INT2 & 

INT3" versions of RPA1 (0.389) and RPA2 (0.389).  Thus, one would pick an INT1 package 

among RPA1, RPA2, RPA3, and SAT1, and an "INT2 & INT3" package from RPA1 or RPA2.  

Note that RPA1 or RPA2 can only be selected to fulfill one of those sub-objective sets, as in this 

example there is only one copy available of each asset.  If one chooses RPA 1 for INT1, one 

could not choose it also for "INT2 & INT3." 
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 This eliminates 10 alternatives from the set, reducing the number of alternatives for a 

potential portfolio from 93 to 83, as shown in Table 11.   

Table 11: Alternative reduction 

 

 

However, the time to solve is greatly improved, as seen in Table 12.   

 

Table 12: Combination reduction 

 

  

 Reducing the number of alternatives by 10.75% through removing dominated assets 

reduces the total number of portfolios, and thus the time to solve, by 99%.  Table 12 shows time 

to solve with a 24-processor network when each portfolio is processed in three hours.  This 

processing time definition is arbitrary; the percent reduction in total combinations (and thus 

reduction in time to solve, no matter the unit) is 99%, an incredible savings.  As the type of 

constraint changes, such as number of allowable assets, more or fewer assets can be eliminated, 

adjusting the percent reduction in time to solve. 
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 This basic screening can be used to account for other constraints.  If one type of aircraft 

must be chosen, it would be advantageous to choose AC2 (0.314) over AC1 (0.270), as AC2 is 

stronger in INT3, which is weighted heavier (and thus contributes more value to the full 

hierarchy) than AC1's INT2 strength.  If two of the three satellites must be chosen, the best 

combination is SAT1 (0.612) and SAT3 (0.239).  These types of alternative-selection problems 

can be solved using standard mixed integer programming techniques with simple constraints. 

 Other times, inherent properties are known about two similar ISR assets.  For example, 

consider RPA1 and RPA2.  Each has identical basing, route, and platform options.  It may be 

known that RPA1 is a newer, updated version of RPA2.  Thus, it can be assumed that RPA1, 

though it is designed to have the same capability set as RPA2, actually performs at a better level 

operationally.  Exact performance data is not needed; the knowledge that as RPA1 was created to 

improve upon RPA2 allows for the assumption that RPA1 performs better than RPA2.  

Whenever an RPA1 platform provides the identical sub-objective capability set as RPA2, the 

RPA2 platform can be eliminated as its performance is assumed to be dominated.  (In a more 

rigorous analysis it might be necessary to consider other factors such as cost of operation, which 

may dissuade elimination.)  In the situation under examination, RPA1 and RPA2 both provide 

three possible platform configurations (two versions of INT1 plus one version of "INT2 & 

INT3").   If a constraint exists that only one RPA asset may be selected, because it is assumed 

RPA1 provides better inherent capability than RPA2, RPA2 can be eliminated from the 

alternative set.  This results in the post-screening alternative list in Table 13. 
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Table 13: Alternative reduction 

 

  

 This type of logical screening, possible during capability-based examination, can greatly 

reduce the number of potential portfolio combinations as shown in Table 14. 

  

Table 14: Combination reduction 

 

  

 Eliminating RPA2 from consideration reduces the total number of alternatives by 

38.71%, and reduces the number of portfolios (and thus time to solve) by 97.30%.   

 Note that in this case, 38.71% of alternatives eliminated produced a lower percentage 

reduction in total combinations (97.30%) than in the previous case when 10.75% of alternatives 

were eliminated (99.00%).  When eliminating alternatives from one asset, the percent reduction 

in alternatives can be much higher (38.71% vs. 10.75%), but the percent reduction in total 

combinations may be lower (97.30% vs. 99.00%).  This is a function of the multiplicative nature 

of calculating total combinations.  The first case removed a multiplicative factor of 100 through 

the removal of 10 alternatives: AC1 platforms from five to one (removal of multiplicative factor 
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of 5), AC2 from five to one (5), SAT2 from two to one (2), and SAT3 from two to one (2), and  

  The second case removed a multiplicative factor of 37 through the 

elimination of 36 alternatives.  Thus, it is generally better to screen and eliminate platforms from 

multiple assets than only to remove a large number of platforms from one asset.  The number of 

alternatives eliminated is not a perfect indicator of percentage decrease in the number of 

combinations. 

 Advanced Screening. 
 
 The binary capability-based screening process previously described is useful for 

eliminating totally dominated alternatives.  However, many times an alternative will not be 

completely dominated by another alternative; organizational efficiencies tend to eliminate 

redundant assets.  It may be useful to perform a more detailed procedure that is fundamentally 

capability-based but adds a slight layer of estimated alternative performance for each capability.  

This process requires more resources initially, but can be accomplished in an entirely reasonable 

amount of time and greatly reduces the time and cost necessary for later detailed portfolio 

performance-based analysis.   

 This new process uses the rolled-up hierarchy that consolidated sub-objectives and 

measures for each objective, as shown in Figure 14.  This level of granularity may be necessary 

if the measures of Quality, Timeliness, and Persistence cannot be generalized across all sub-

objectives.  An alternative cannot be given a single score to represent "quality," because quality 

in the INT1 domain may be quite different than quality in the INT3 domain.  Similarly, beyond 

the most basic capability-based analysis, it is not good practice to give an alternative a binary 

score for capability in a sub-objective.  For example, an asset may be designed to provide 

capability in INT3, but achieves this through extreme strength in Quality 3.  Because Quality 3 is 
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a low-weighted measure for INT3, that asset is really only achieving 1/6th of the possible INT3 

value. 

 A better primary analysis can yield much better information on alternative value, and thus 

which alternatives may comprise better portfolios.  Establishing quality alternatives through 

primary analysis allows for the confident elimination of poor alternatives, thus reducing the 

number of portfolios.  Then, better starting points for a response surface methodology 

algorithmic search in conjunction with the detailed physics-based computer portfolio simulations 

can be created. 

 To begin, each of the nine measures is assigned a value function that maps an 

alternative's estimated capability level in a measure to the value of that capability level.  These 

value functions are operational for every alternative, so they are allowed to be broad, even 

categorical if necessary, to account for the wide range of capabilities and levels of performance 

ISR assets provide.  Because these value functions operate on the condensed hierarchy, they are 

defined by the capability range of the alternative set itself, not for any specific objective domain.   

   Once the nine value functions are created, the subject matter expert for each asset scores 

each of his asset's platform alternatives in each measure.  Each asset alternative may achieve 

different value in a measure based on its platform options (i.e., base, route, ISR package).  The 

asset subject matter expert estimates each platform's capability level, which is then mapped to a 

value through the value functions.  This task should not present significant difficulty to a party 

familiar with an asset's capabilities under different conditions.  Each asset is scored by a different 

subject matter expert, so the total work is spread among a large number of people.  This may 

prove the lengthiest part of the process in terms of man-hours, but the work can be done 

concurrently and adds tremendous value to the fidelity of this screening methodology.   
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 Expanding on the ISR example explored previously, let the measure value functions be 

defined categorically as shown in Table 15.  

  

Table 15: Categorical value functions 

 

  

 The definitions for INT2 and INT3 are identical because these methods of intelligence 

collection are similar in nature.  The value functions differ because the distribution of alternative 

capability level in a measure is different between the two sub-objectives, as is the value to a sub-

objective of certain levels of capability. 

 An ISR alternative that provides low resolution for INT1 achieves a value of 0.10 for the 

INT1 Quality measure.  (Actual low, medium, and high capability level definitions for each 

measure are available but classified and not included here.)  Multiplying this value by the global 

weight of the INT1 Quality measure (0.178) gives 0.0178 as the weighted measure value 

achieved.  This process is repeated for each of the nine measures, and the sum of the weighted 

measure values provides the score for that alternative.   
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 The subject matter experts evaluate the set of nine measures for each of an asset's 

platforms.  While it seems a large number of evaluations must occur, with categorical value 

functions, many platforms are likely to have identical value in certain measures.  Additionally, 

many of the measures will simply be assigned a value of zero (not low) if a platform provides no 

capability in that sub-objective, thus simplifying the process.  It is assumed that no platform is 

perfect and thus there is no option for a value score of one.  If an "ideal" platform can be defined, 

it can be included as a category with value one. 

 The assets under consideration in this example vary in sub-objective performance as a 

function of base, route, and package.  Persistence signifies the quantity of data the ISR asset 

provides, which is commonly a function of the amount of time spent collecting data.  Persistence 

can be affected by the route a asset takes, as some flight paths may provide a longer duration of 

target coverage.  The RPAs score high in persistence on routes 1 and 2, which are direct paths to 

the target area.  The RPAs score low in persistence for routes 5 and 6, which require a longer 

travel path until the RPA nears the target; only a short loiter time far from the target is possible 

before the RPA must return for fuel.  RPA routes 3 and 4 fall between these extremes.  The ACs 

can follow two possible routes: route 1 allows for direct travel and high persistence, while route 

2 requires a longer path and thus only medium persistence before the aircraft must return to base. 

The three SATs are always in geosynchronous orbit and are capable of constant surveillance; 

thus, high persistence.  

 Timeliness refers to the speed at which an ISR asset can provide raw data to the analysis 

center for transformation into useable information, and thus is a function of the asset.   RPA1 

possesses high timeliness due to upgraded software and hardware assets that allow for powerful 

compression and fast transmission.  RPA2 and RPA3, as well as AC1 and AC2, utilize older 
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technology that cannot transmit as efficiently, and thus exhibit medium timeliness.  Naturally, 

the ever-present SATs also possess high timeliness.   

 Quality is a function of asset, route, and the specific ISR package installed on the asset.  

The newer RPA1 has better technology, while RPA2 and RPA3 have older packages installed.  

Routes 2 and 4 bring an RPA closer to the target area, leading to higher quality data, but there is 

a risk of interference from the enemy.  Routes 1 and 3 keep an RPA safer by following a path 

farther from the target area, but thus lead to lower quality data.  So, RPA1 following route 2 or 4 

achieves high quality, while route 1 or 3 leads to medium quality.  For RPA2, route 2 or 4 

achieves medium quality, while route 1 or 3 leads to low quality.  Routes 5 and 6 are far from the 

target area and thus have low quality for all RPAs.  AC1 can carry a high quality INT2 package 

and medium quality INT3 package, while AC2 can carry medium quality INT2 and high quality 

INT3; their packages are such that route does not change performance enough to move value 

function category.  The SATs all offer high quality capabilities.   

 With the values achieved in each measure established, an alternative can be scored by 

multiplying the value for a measure by the global weight of that measure.  For example, scoring 

for RPA1 version 3 is shown in Table 16. 

 

Table 16: Scoring for an alternative 

 

  

This platform achieves value of 0.50 for Quality 2, 0.80 for Timeliness 2, and 0.95 for 

Persistence 2, plus 0.60 for Quality 3, 0.95 for Timeliness 3, and 0.95 for Persistence 3.  
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Multiplying each value by its respective weight (found in Table 16 row 3 under the measure 

name) and summing results in a total score of 0.3270. 

 Table 17 shows the list of scored alternatives sorted by total value achieved. 

 

Table 17: Scoring for all alternatives
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 In this example with broad categorical value functions and no capability level distinction 

between the two bases, many of the alternatives have identical scores.  However, this is expected 

in an initial screening procedure when the subject matter expert is tasked to assign rough 

capability level characteristics to a set of platforms -- many of the platforms will fall into the 

same value function category.  It is the task of the later detailed simulation process to break these 

ties based on a true physics-based performance evaluation.    

 Note that because the highest value function categories are not a value of 1.00, the 

highest possible value for an alternative to achieve is 0.8177 -- when the alternative scores in the 

"high" category for all nine measures.  The raw score for each alternative can be translated to the 

percentage of possible value it achieves, shown in Table 18. 
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Table 18: Value achieved for all alternatives 

 

  

 Performing well on the highly-weighted INT1 sub-objective is the key to a high 

percentage of value achievement.  However, even the best assets achieve only 60% of the 

possible value, so this screening process becomes important as a variety of assets are needed to 

achieve high total value or value across all INTs. 
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 Four RPA1 platforms and the two SAT1 platforms provide the highest value of the 

alternatives because of their strong INT1 capabilities.  Several other RPA1 and RPA2 platforms 

also achieve significant value through strength in this sub-objective.   

 Of the alternatives that provide INT2 and INT3 value, RPA1 alternatives provide the 

highest six options, followed by RPA2 and the ACs.  When examining which assets provide 

value to different INTs, it is important to remember that only one copy of each asset is available 

in this simulation.  Thus, RPA1 could not be selected to service both INT1 and INT2 & INT3.   

 AC1 and AC2 are mediocre, achieving less than 34% of the possible value, and less 

desirable than some RPA1 and RPA2 options for servicing INT2 & INT3.  SAT3, the only 

option that serves solely INT3, provides low total value at 25%.  SAT2, the only option that 

serves solely INT2, provides even lower total value at 14%.  While the SAT2 and SAT3 assets 

are strong for their respective sub-objectives, INT2 and INT3 are simply weighted too low for 

these assets to provide significant overall value.  It is important to remember that the numbers 

and values assigned here are for illustrative purposes only, as true values are known but 

classified.  Thus, these results (i.e., lack of SAT strength) may be unintuitive and not match 

reality. 

 These results help determine not only which assets are vital, but which platforms of each 

asset are preferred.  SAT1, RPA1, and RPA2 are the leading assets.  RPA1 flying route 2 with an 

INT1 package provides 60.52% of the total possible value; SAT1 also achieves this value.  The 

highest valued RPA2 platform follows route 2 with an INT1 package.  Table 19 shows the best 

platform for each asset, with ties included. 
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Table 19: Best platforms for each asset 

 

  

 When beginning to create a portfolio of ISR assets, it would be advantageous to start with 

alternatives from this set. 

 The methodology developed allows for two main screening processes.  First, the assets 

under consideration can be explored for simple value dominance.  If every platform of Asset A 

provides less value than every platform of Asset B, Asset A can be eliminated under a rough of 

screening procedure.  This screening applies when the goal is achieving overall value and when 

constraints prevent the selection of both assets.  For example, if within a larger problem only one 

SAT asset can be selected, both SAT1 platforms (60.52%) dominate SAT3 (25%) and SAT2 

(14%), so SAT2 and SAT3 can be removed from the pool of possible alternative.  It must be 

noted that SAT2 and SAT3 provide different INT capabilities than SAT1, and removing them 

from the alternative pool could be detrimental to an ideal solution.      

 However, if a constraint states firmly that only one SAT asset can be used, SAT1 will 

provide the most value to the overall hierarchy.  Removing just two assets (and only two 
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alternatives, as each asset has only one platform) still results in a large reduction in the number 

of portfolios for evaluation and thus the time required for evaluation.   

 

Table 20: Alternative and combination reduction 

 

 

 As shown in Table 20, a two percent reduction in alternatives results in a 75% reduction 

in combinations. 

 This simple value dominance can dangerously eliminate versatile alternatives.  

Narrowing dominance to the sub-objective level, when value in a certain sub-objective is desired 

in addition to overall value, can help mitigate this danger.  A portfolio goal may be to achieve 

value in a set of INT sub-objectives in addition to maximizing overall value.  The capability 

level assessment process allows for an alternative's total value achieved to be broken down into 

value achieved in each sub-objective.   

 If every alternative for Asset A provides more value than every alternative for Asset B 

for a specific set of sub-objectives of interest, then Asset B is thoroughly dominated.  Depending 

on the constraints of the problem, Asset B can be eliminated as it will not be chosen to provide 

value in the set of sub-objectives over Asset A.   

 A single sub-objective example involves SAT1, RPA2 versions that provide INT1 

capability, and RPA3.  Each of these assets provides INT1 capability.  The value generated from 

the capability level of SAT1 dominates the value generated from all versions of RPA2 and RPA3 

in this sub-objective category.   If only one alternative can be chosen to provide INT1 capability, 
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SAT1 would be chosen and the INT1 versions of RPA2 and RPA3 would be screened, 

eliminating a large number of alternatives.   

 A multiple sub-objective example involves the platforms of RPA1, RPA2, AC1, and AC2 

that provide INT2 and INT3 capabilities.  While RPA1 and RPA2 platforms score highest in 

these sub-objectives, several RPA1 and RPA2 platforms also rank below AC1 and AC2.  Thus, 

in this situation, none of the assets could be screened on total dominance.  However, if there 

existed a third "AC3" asset that provided a value score of < 22.45% in INT2 and INT3 for all 

AC3 platforms, it would be dominated by the existing assets in those sub-objectives and could be 

eliminated. 

 The method just described involves screening an asset based on total dominance by 

another asset -- when all platforms of one asset dominate all platforms of another asset in a set of 

sub-objectives.  In reality, this situation may be rare.  The second screening method is based on 

alternative dominance within a specific asset.  RPA1 has 37 possible platforms as a result of the 

combinations of its basing options, routes, and INT packages, but only one can be selected for 

deployment.  Instead of including all 37 alternatives in the portfolio modeling process, it may be 

valuable to examine only a select few top scoring RPA1 platforms.  The top scoring alternatives 

within an asset are selected for further analysis, while the remainder are screened out.  For an 

asset such as RPA1 that has two sub-objective capability coverage options (INT1 or INT2 & 

INT3), it is important to screen widely enough to include RPA1 platforms that cover both areas.  

This way, constraints dealing with sub-objective coverage or limitations in number of assets can 

be met without overly-limiting the possible solutions.  Thus, one would select RPA1 versions 4, 

5, 22, and 23, which score highest (60.52%) and provide INT1 capability, as well as RPA1 

versions 6 and 24, which score highest (39.48%) for the INT2 & INT3 package.  When ties 
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occur, all alternatives are included.  The performance is not truly identical, but appears this way 

due to the categorical value functions.  More detailed modeling will resolve these ties and 

determine the true best alternative.  Following this model, the alternative set is reduced to the 21 

alternatives in Table 21. 

Table 21: Alternative reduction based on value in sub-objective areas 

 

 

This reduction keeps the highest-scoring alternatives and still allows for a robust portfolio 

selection in the face of enforced limitations.  Many possibilities exist to provide high overall 

value and achieve value in the three INT sub-objectives, no matter asset type or total number of 

assets constraints.    
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Table 22: Alternative and combination reduction 

 

  

 As shown in Table 22, this procedure reduces the total alternatives by 68.82% and 

reduces the number of possible portfolios by 98.71%.  Originally, the time to evaluate all 

portfolios was 4,278 days, or 11.72 years -- an impossible amount of time.  Now, the time to 

evaluate all possible portfolios is reduced to 55.1 days.  Not ideal, but a possible evaluation time.  

This was a conservative screening, as many alternatives with inferior total value remained.  More 

aggressive screening would further reduce the time for evaluation.    

 This process establishes a set of alternatives to serve as a starting point for a response 

surface search algorithm that utilizes a physics-based simulation program for true portfolio 

performance evaluation.  Even if no alternatives are truly eliminated from the search, by 

providing the algorithm with a good starting point based on the set of alternatives found above, 

the total search time is likely reduced.  Actually eliminating inferior alternatives speeds the 

search even more. 

 Sufficiency Screening. 
 
 After screening inferior assets or alternatives to reduce the number of portfolios to a more 

reasonable size, a complex simulation program is implemented to accurately assess portfolio 

performances.  An algorithm searches for the highest-performing portfolio, effectively ranking 

portfolios as it progresses.   

 While determining the highest-performing portfolio is valuable, this may not be the 

actual goal.  Often, it is more valuable to determine which portfolios are sufficient to meet the 
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needs of the problem, and which are not.  This becomes important when cost is considered in the 

implementation of a portfolio.   

 In the ISR example, the best performing portfolio will simply use all available assets in 

their ideal configurations -- a trivial solution.  This best portfolio may also be the most 

expensive, yet provide only marginal additional value over another portfolio that still sufficiently 

solves the problem but costs less.  It is important to identify which ISR asset portfolios will meet 

the needs; any portfolio performing above the requirement can still be selected, though extra 

resources potentially required may be allocated better elsewhere.     

 A process is needed to define this sufficiency level, so the portfolio set can be divided 

into acceptable and unacceptable sets.  From there, post-analysis can be performed on the 

acceptable portfolios based on cost and other factors.  Fundamentally, portfolio sufficiency is 

derived from the opinions of the decision maker.  As previously discussed, for many problems a 

rough minimum acceptable performance level of a solution is known.  The difficulty is 

determining which portfolios achieve that performance given the inherent uncertainties in both 

assigning the level and determining true portfolio performance. 

 The sufficiency determination process for the ISR problem begins at the analyst level.  

The raw data collected from ISR assets is transformed into actionable intelligence by a set of 

analysts.  An analyst who works with this data on a regular basis first creates a value function to 

map the characteristics of the data he receives to the value of useable information generated.  

Depending on the analyst's specialty area, this characteristic could be quantity of data, quality of 

the data, timeliness of the data, or some combination.  The analyst uses past experiences and 

future expectations to estimate the value of information that can be created from a certain raw 

data input.  For example, an imagery analyst may feel confident that he can provide a high level 
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of intelligence (i.e., 90% of the maximum value he could possibly provide) with 10 photographs 

a day.  At three photographs a day, the value he can provide drops to 40%.  Thus, a value 

function is created.  Depending on the resolution desired, "analyst" could mean an actual 

individual person, or a larger analysis shop that focuses in a specific area. 

 After value functions are created by each analyst, the top-level decision maker is asked to 

estimate the value he wishes a successful portfolio to provide on a zero-to-one scale, with one 

being the absolute highest value imaginable.  This definition depends on the specific problem 

under consideration.  If the decision maker is determining an appropriate portfolio for the 

reallocation of a portion of current assets to a new mission area, he would provide a number that 

represents the percentage of overall value the new mission is worth, or the percentage of total 

information gathering capability he wishes to allocate to the new mission.   

 In a complete force structuring problem, such as the ISR problem under consideration, 

the goal is to develop a portfolio of assets that that efficiently and sufficiently allocates data to all 

analysts.  In this way, no analyst would be flooded by and none would be starved for raw data, 

and all would have the resources available to perform their job.  The decision maker would 

understand the inefficient status quo as well as the value function process that analysts 

performed.  The decision maker then provides a number that represents the minimum level of 

value he deems necessary from an acceptable portfolio.  Clearly, the closer this number is to one, 

the higher the performance needed for a sufficient portfolio.  If the value of the current 

operational portfolio is known, the decision maker may wish for a percentage improvement on 

current capabilities.   

 Once the decision maker has provided a desired value, this number is transferred back 

down to the analyst level.  This value is found on the y-axis of each analyst's value function 
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graph, and the value function itself maps this value level to a certain level of data characteristic 

on the x-axis, as shown in Figure 17.   

 

 

Figure 17: Analyst value function 

 

Now, the decision maker's single input has been pushed throughout to determine the minimum 

data each analyst should receive.  While the analysts have completely different raw data 

requirements, each will be provided whatever amount necessary to achieve the same value that 

results from processing that data.  This avoids the disparity in data provision that prevents 

optimal collective intelligence generation.  

 The sufficiency level is set at the ability to provide this level of data.  A portfolio can be 

evaluated on whether its performance results in sufficient data to meet the need of each analyst.  

If a portfolio can meet this criterion, it is deemed sufficient and set aside for further post-

analysis.  If a portfolio cannot meet this data criterion, it is deemed insufficient and screened 

from further study.  This screening procedure based on data sufficiency is thus used to further 

reduce the number of portfolios that undergo final analysis to only those that sufficiently solve 
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the problem.  In the post-analysis phase, factors such as cost determine the selection of an ideal 

portfolio.   

 
IV.D Summary 
 
 The purpose of this chapter was to provide an application of several novel screening 

techniques to an actual USSTRATCOM JFCC-ISR hierarchy with a sample alternative data set.  

The methodology developed here transforms a broad performance-based hierarchy designed for 

portfolio evaluation to a simple capability-based hierarchy designed for alternative evaluation.  

Eliminating a number of alternatives results in significantly fewer portfolios, allowing sufficient 

portfolios to be evaluated against the performance-based hierarchy and examined on a reasonable 

timescale.  
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Conclusions and Recommendations 
 
 

V.A. Introduction 

 The continuous advancement of technology has provided incredible opportunities for the 

Department of Defense to achieve its mission.  Innovation in hardware and software has allowed 

for an explosion in the number of intelligence, surveillance, and reconnaissance platforms 

available.  This progress has coincided with the wars in Iraq and Afghanistan, allowing United 

States efforts to be aided by more, better data.   

 A by-product of new ISR technology becoming available immediately when needed has 

been the inefficient deployment of such assets.  Without proper asset distribution based on 

platform performance and user needs, capability is wasted.  Some analysis units are flooded with 

data impossible to process in a timely manner, while others starve for data that could provide 

actionable intelligence.   

 The establishment by USSTRATCOM JFCC-ISR of an intelligence objectives hierarchy 

is a good start to improving asset deployment.  Next, it must be determined what minimum level 

of data is necessary in which analysis areas so that an appropriate portfolio of ISR assets can be 

generated to sufficiently meet the objectives.  Difficulty arises as there are hundreds of ISR 

platform variations leading to an astronomical number of possible portfolios.  This research 

developed methodologies to confront both of these challenges.  A process was explored to 

eliminate poor ISR alternatives and thus reduce the number of portfolios, followed by a 

procedure to define portfolio sufficiency.    
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V.B. Research Contributions 

 The purpose of this research was to contribute to the field of Decision Analysis a new 

methodology to examine multiobjective decision problems with combinatorial alternative sets.  

Specifically, the procedures developed apply when each objective is evaluated through the same 

set of sub-objectives, a common decision problem characteristic. This research established 

processes to reduce the size of the alternative set through intelligent screening and to determine 

the sufficiency of portfolios of alternatives.  

The first contribution was in the area of alternative screening.  Many problems feature a 

large number of alternatives, especially as each variation of a general solution can be considered 

a new alternative.  When the decision maker may select a portfolio of these alternatives to 

generate a solution, the number of possibilities becomes enormous; evaluating all portfolios is 

difficult.   

Eliminating a small number of alternatives can drastically reduce the number of possible 

portfolios.  A procedure was developed to reduce the multi-objective performance-based 

hierarchy to a simple capability-based hierarchy.  This allowed for assessment of alternative 

contribution to the overall goal through both basic capability and slightly more advanced 

estimated performance.  With these assessments made, low-performing alternatives may be 

eliminated depending on the constraints of the specific problem under evaluation.  This 

procedure commonly reduces the number of possible portfolios by greater than 95%.   

 The second contribution to the field of decision analysis was in the area of alternative 

sufficiency.  It is valuable to sort alternatives, or portfolios of alternatives, into two groups: those 

that successfully meet the minimum requirements of the problem and those that fail to do so.  

Then, the failed alternatives can be removed from further consideration.   
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 In problems where the decision maker is distant from the lowest tier in the evaluative 

hierarchy, the performance valued by the decision maker is difficult to translate into the bottom 

tier measure requirements an alternative must provide.  Thus, a method was developed to push 

the decision maker's needs down the hierarchy.  This process combined performance or 

confidence requirements from the decision maker with the knowledge of those familiar with the 

specifics of the bottom tier of the hierarchy, thereby determining the level of measure 

performance necessary to sufficiently achieve the goal.  A portfolio of alternatives could then be 

rated on whether it provided an acceptable level of performance in each measure and thus sub-

objective. 

 
V.C. Recommendations for Further Research 

 This research developed a methodology that was shown to successfully achieve its 

mission of eliminating alternatives.  A theoretical set of alternatives was analyzed  and screened 

according to various constraints, demonstrating the ability of the procedure to generate a large 

percentage reduction of the portfolio space.   

 Future research should attempt to validate this methodology through application to a full 

problem where the performance of a large number of portfolios is known.  The procedure can be 

followed to eliminate alternatives; according to the theory presented in this research, the best-

performing portfolios should be comprised of alternatives that remain after screening.     

 These validation studies are necessary to determine the rigor of the methodology and 

identify potential process improvements.  Additional research can focus on refining the 

methodology and expanding the universe of problems to which it can be applied, or adapting it 

for a new type of problem.  Finally, an expansion of the portfolio sufficiency process described 
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here can be performed.  Areas of investigation could include sensitivity analysis, sub-objective 

performance to objective achievement mapping, and minimum sub-objective achievement issues.  

 
V.D. Conclusions 

 In a world growing more interconnected and data driven, decision makers face problems 

more complex than ever before.  Failing to give a problem the careful study it deserves can lead 

to a poor decision with potentially disastrous results.  At the very least, the decision maker may 

fail to obtain all the value possible.  

 By reducing the complexity of the hierarchy, the analyst can reduce the size of the 

alternative set and number of potential portfolios.  Eliminating poor alternatives allows for better 

concentration on the remaining solutions, improving the chances that a good decision will be 

made. 

 The new methodology developed in this research for screening alternatives and 

determining sufficiency criteria was applied to the USSTRATCOM hierarchy with a sample 

alternative set.  The results demonstrated that a capability-based assessment can greatly reduce 

the number of alternatives, making performance evaluation of the portfolios comprised of good 

alternatives more feasible.  Applying this process to the full ISR force sizing problem will allow 

for an ideal mix of assets to be identified.  This portfolio will provide the data needed to generate 

quality intelligence to the benefit of the military and the United States.  
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Appendix A.  
 

JFCC-ISR Hierarchy 
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Appendix B.  
 

Blue Dart 
 

 Researchers at the Air Force Institute of Technology (AFIT) are leading the way on 

ground breaking research to help commanders obtain the intelligence, surveillance, and 

reconnaissance (ISR) assets needed to fight and win wars.  The recent United States military 

efforts in Iraq and Afghanistan have spurred the development of innovative surveillance and 

reconnaissance technology to meet increasing data requirements and generate actionable 

intelligence.  In today's complex ISR world, there are billions of combinations of platforms, 

sensors, and concepts of operations possible to help a commander understand the ever-changing 

battlefield.  The time to model and evaluate the effectiveness of these combinations, even with 

the latest advancements in computing technology, is prohibitive, on the order of many years.  

This is unacceptable given today's immediate and crucial operations.   

 AFIT researchers are engaged in advanced study of ideal ISR asset distribution to 

optimize intelligence gathering.  New assets have been rapidly, but inefficiently, deployed; poor 

coordination across the Department of Defense has led to a failure to meet the needs of the many 

units that require appropriate information on a timely basis.  Some organizations drown in data 

as numerous assets stream terabytes of data to be processed.  Meanwhile, other groups suffer 

from a lack of the data needed to develop actionable intelligence.  AFIT is developing 

sophisticated mathematical models to ensure an ideal portfolio of ISR assets is deployed to 

successfully meet the complexity of today's joint environment.  

 Difficulty arises when attempting to identify the ideal portfolio.  The Department of 

Defense possesses many different types of assets to  provide ISR capability.  For each asset, 

multiple equipment packages may be installed to generate different types of data.  Assets can be 
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used in a number of locations in a variety of ways.  These variables and others lead to many 

possible usage alternatives for a single asset.  In the context of Department of Defense total 

assets and theatre deployment options, an enormous number of possible portfolios are generated 

through the combination of different asset alternatives.  Computer modeling of every portfolio's 

performance requires an impossibly long time on even the fastest of computer systems. A 

process is needed to select more efficiently an ideal portfolio.   

 AFIT has invented a two-part methodology for a class of portfolio selection problems 

such as the ISR situation previously described, when there exist multiple objectives that are all 

judged on the same hierarchical metric set.  First, a novel capability-based screening process was 

developed to evaluate ISR asset alternatives on intended capability through the reduction of the 

multiobjective performance hierarchy.  Poor alternatives are eliminated, reducing the size of the 

alternative set.  Removing only a few alternatives greatly reduces the number of possible 

portfolios, allowing for better examination of the remaining portfolios.     

 Next, a method was developed to define portfolio sufficiency according to the 

requirements of the decision maker.  The portfolios remaining after the capability-based 

screening are then evaluated on a performance basis to determine sufficiency or not.  With a set 

of sufficient portfolios comprised of well-performing alternatives, higher resolution post-analysis 

methods can be applied to choose a solution.    

 This two-part procedure was applied to an ISR objective hierarchy developed by the 

United States Strategic Command Joint Functional Component Command for Intelligence, 

Surveillance and Reconnaissance.  After deconstructing the hierarchy, a set of representative 

alternatives were evaluated and a variety of screening procedures were applied to demonstrate 

the significant reduction in the number of portfolios possible.  In one such screening process, 
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researchers were able to reduce the amount of time needed to examine good force mixes from 11 

years to two months.  This process allows for more resources to be dedicated to estimating the 

true performance of the sufficient portfolios; new systems can still be fielded rapidly, but now 

optimized to help the soldiers, sailors, airmen and marines in the field.     

 The procedure developed at AFIT and applied to ISR distribution can be generalized to 

any complex multiobjective problem with the hierarchical structure described in which a 

portfolio of alternatives is permitted.  Many military force structuring problems use this type of 

hierarchical decision making structure.  Eliminating poor alternatives initially through an 

intelligent screening process, as well as only focusing on sufficient portfolios, can greatly reduce 

the number of portfolios under consideration.  This smaller universe of solutions increases the 

likelihood the ideal or a near-ideal solution will be selected.  In an environment with limited 

resources, the work of AFIT’s researchers to optimize assets may prove the difference between 

failure and success. 

 

The views expressed in this article are those of the author and do not reflect the official policy or 

position of the United States Air Force, Department of Defense, or the US Government. 
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